Skip to main content
Log in

Catastrophe analysis of deep tunnel above water-filled caves

深埋隧道隐伏岩溶洞穴的灾变分析

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

To explore the influence of karst cavity pressure on the failure mechanisms of rock layers above water-filled caves, novel blow-out and collapse mechanisms are put forward in this study. The proposed method uses the nonlinear optimization to obtain the failure profiles of surrounding layered rock with water-filled cave at the bottom of the tunnel. By referring to the functional catastrophe theory, stability analysis with different properties in different rock layers is implemented with considering the incorporation of seepage forces since the groundwater cannot be ignored in the catastrophe analysis of deep tunnel bottom. Also the parametric analysis is implemented to discuss the influences of different rock strength factors on the failure profiles. In order to offer a good guide of design for the excavation of deep tunnels above the water-filled caves, the proposed method is applied to design of the minimum effective height for rock layer. The results obtained by this work agree well with the existing published ones.

摘要

为了探讨岩溶洞穴压力对充水洞穴中隧道基岩围岩稳定性的影响, 本研究提出了新的岩层坍塌 和爆破机制。该方法利用非线性优化方法得到隧道底部与充水洞顶之间层状围岩的破坏面, 并对隧道 底部充水洞穴围岩破坏过程的预测进行了数值优化。因为地下水在岩层破坏中起着关键作用, 基于功 能突变理论, 本文提出的方法结合渗流力作用对层状围岩破坏模式进行了运动学分析。本文同时进行 参数研究以分析不同岩石参数对破坏形状的影响。该方法为充水洞穴上方的深埋隧道开挖提供良好的 设计指导, 可应用于岩层的最小安全厚度设计。这项工作获得的结果与现有的已发表的结果很好地吻 合。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. ZHANG D B, JIANG Y, YANG X L. Estimation of 3D active earth pressure under nonlinear strength condition [J]. Geomechanics and Engineering, 2019, 17(6): 515–525.

    Google Scholar 

  2. LI Z W, YANG X L. Kinematical analysis of active earth pressure considering tension crack, pore-water pressure and soil nonlinearity [J]. KSCE Journal of Civil Engineering, 2019, 23(1): 56–62.

    Article  MathSciNet  Google Scholar 

  3. LI T Z, YANG X L. 3D rotational failure mechanism of tunnel face in weathered and saturated Hoek-Brown rock masses [J]. KSCE Journal of Civil Engineering, 2019, 23(6): 2723–2732.

    Article  Google Scholar 

  4. CUI Q L, WU H N, SHEN S L, XU Y S, YE G L. Chinese karst geology and measures to prevent geohazards during shield tunnelling in karst region with caves [J]. Natural Hazards, 2015, 77: 129–152.

    Article  Google Scholar 

  5. YANG X L, CHEN J H. Factor of safety of geosynthetic-reinforced slope in unsaturated soils [J]. International Journal of Geomechanics, 2019, 19(6): 04019041.

    Article  Google Scholar 

  6. AUGARDE C E, LYAMIN A V, SLOAN S W. Prediction of undrained sinkhole collapse [J]. Journal of Geotechnical and Geoenvironmental Engineering, 2003, 129: 197–205.

    Article  Google Scholar 

  7. ERIC C D, ÖZGUR A, HALUK A, LEVENT T. Stability charts for the collapse of residual soil in Karst [J]. Journal of Geotechnical and Geoenvironmental Engineering, 2009, 135: 925–931.

    Article  Google Scholar 

  8. PAN Q J, DIAS D. The effect of pore water pressure on tunnel face stability [J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2016, 40(15): 2031–2160.

    Article  Google Scholar 

  9. YANG X L, ZHANG S. Seismic active earth pressure for soils with tension cracks [J]. International Journal of Geomechanics, 2019, 19(6): 06019009.

    Article  Google Scholar 

  10. CHEN W F. Limit analysis and soil plasticity [M]. Amsterdam: Elsevier, 1975: 47–99.

    Google Scholar 

  11. ZHANG R, YANG X L. New 3D failure analysis of water-filled karst cave beneath deep tunnel [J]. Geomechanics and Engineering, 2019, 18(1): 1–9.

    Google Scholar 

  12. ZHANG R, YANG X L. Limit analysis of anchor trapdoor embedded in nonhomogeneous and nonlinear soils [J]. International Journal of Geomechanics, 2019, 19(8): 04019089. DOI: https://doi.org/10.1061/(ASCE)GM.1943-5622.0001476.

    Article  Google Scholar 

  13. QIN C B, CHIAN S C. Kinematic analysis of seismic slope stability with a discretisation technique and pseudo-dynamic approach: A new perspective [J]. Geotechnique, 2018, 68(6): 492–503.

    Article  Google Scholar 

  14. QIN C B, CHIAN S C. 2D and 3D stability analysis of tunnel roof collapse in stratified rock: A kinematic approach [J]. International Journal of Rock Mechanics and Mining Sciences, 2017, 100: 269–277.

    Article  Google Scholar 

  15. PAN Q J, DIAS D. Face stability analysis for a shield-driven tunnel in anisotropic and nonhomogeneous soils by the kinematical approach [J]. International Journal of Geomechanics, 2015, 16(3): 04015076.

    Article  Google Scholar 

  16. ZHANG R, SMITH C. Upper bound limit analysis of soils with a non-linear failure criterion [J]. Canadian Geotechnical Journal, 2019, https://doi.org/10.1139/cgj-2018-0513.

  17. HOEK E, BROWN E T. Practical estimates of rock mass strength [J]. International Journal of Rock Mechanics and Mining Sciences, 1997, 34(8): 1165–1186.

    Article  Google Scholar 

  18. ZHANG R, LU S P. Kinematic analysis of shallow tunnel in layered strata considering joined effects of settlement and seepage [J]. Journal of Central South University, 2018, 25: 368–378.

    Article  Google Scholar 

  19. XU J S, YANG X L. Seismic stability of 3D soil slope reinforced by geosynthetic with nonlinear failure criterion [J]. Soil Dynamics and Earthquake Engineering, 2019, 118: 86–97.

    Article  Google Scholar 

  20. LI Y X, YANG X L. Soil-slope stability considering effect of soil-strength nonlinearity [J]. International Journal of Geomechanics, 2019, 19(3): 04018201

    Article  Google Scholar 

  21. ZHANG D B, LIU Z Z, ZHANG J H. A new failure mechanism for deep cavity and upper bound solution of supporting pressure [J]. Journal of Central South University, 2017, 24(9): 2082–2091.

    Article  Google Scholar 

  22. HUANG X L, ZHANG R. Catastrophe stability analysis for shallow tunnels considering settlement [J]. Journal of Central South University, 2018, 25: 949–960.

    Article  Google Scholar 

  23. ZHANG R, XIAO H B, LI W T. Functional catastrophe analysis of collapse mechanism for shallow tunnels with considering settlement [J]. Mathematical Problems in Engineering, 2016, Article ID 4820716.

  24. HUANG F, ZHAO L H, LING T H, YANG X L. Rock mass collapse mechanism of concealed karst cave beneath deep tunnel [J]. International Journal of Rock Mechanics and Mining Sciences, 2017, 91: 133–138.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui Zhang  (张睿).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, R. Catastrophe analysis of deep tunnel above water-filled caves. J. Cent. South Univ. 26, 1820–1829 (2019). https://doi.org/10.1007/s11771-019-4136-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-019-4136-1

Key words

关键词

Navigation