Skip to main content
Log in

Preparation and application of perovskite-type oxides for electrocatalysis in oxygen/air electrodes

钙钛矿型氧化物的制备及其在氧/空气双功能电极中的应用

  • Review
  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Recent advances in the preparation and application of perovskite-type oxides as bifunctional electrocatalysts for oxygen reaction and oxygen evolution reaction in rechargeable metal-air batteries are presented in this review. Various fabrication methods of these oxides are introduced in detail, and their advantages and disadvantages are analyzed. Different preparation methods adopted have great influence on the morphologies and physicochemical properties of perovskite-type oxides. As a bifunctional electrocatalyst, perovskite-type oxides are widely used in rechargeable metal-air batteries. The relationship between the preparation methods and the performances of oxygen/air electrodes are summarized. This work is concentrated on the structural stability, the phase compositions, and catalytic performance of perovskite-type oxides in oxygen/air electrodes. The main problems existing in the practical application of perovskite-type oxides as bifunctional electrocatalysts are pointed out and possible research directions in the future are recommended.

摘要

本文综述了近期钙钛矿型氧化物在氧/空气电极中作为氧还原和氧析出双功能电催化剂的制备方 法。详细地介绍了各种制备方法并对其优缺点进行比较分析,发现不同的制备方法对钙钛矿型氧化物 的形貌和物理化学性能的影响很大。钙钛矿型氧化物作为双能电催化剂被广泛应用于金属-空气电池 中,归纳了其制备方法与电催化性能之间的关系。在氧/空气电极应用中,重点讨论了影响钙钛矿型氧 化物的结构稳定性、相组成和电催化活性的因素,指出了其作为双功能电催化剂在实际应用中存在的 主要问题,并对今后的研究方向进行预测。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. TANAKA H, MISONO M. Advances in designing perovskite catalysts [J]. Curr Opin Solid State Mater Sci, 2001, 5: 381–387. DOI: 10.1016/S1359-0286(01)00035-3.

    Article  Google Scholar 

  2. CHEN Xiao-hua, HU Jian-qiang, CHEN Zhi-wu, FENG Xiu-mei, LI Ai-qing. Nanoplated bismuth titanate submicrospheres for protein immobilization and their corresponding direct electrochemistry and electrocatalysis [J]. Biosens Bioelectron, 2009, 24: 3448–3454. DOI: 10.1016/j.bios.2009.04.037.

    Article  Google Scholar 

  3. LI S, NECHACHE R, DAVALOS I A V, GOUPIL G, NIKOLOVA L, NICKLAUS M, LAVERDIERE J, RUEDIGER A, ROSEI F. Ultrafast microwave hydrothermal synthesis of BiFeO3 nanoplates [J]. J Am Ceram Soc, 2013, 96: 3155–3162. DOI: 10.1111/jace.12473.

    Google Scholar 

  4. LENG Jing, LI Shuang, WANG Zhong-shan, XUE Yan-feng, XU Da-peng. Synthesis of ultrafine lanthanum ferrite (LaFeO3) fibers via electrospinning [J]. Mater Lett, 2010, 64: 1912–1914. DOI: 10.1016/j.matlet.2010.06.005.

    Article  Google Scholar 

  5. LI S, KATO R, WANG Q, YAMANAKA T, TAKEGUCHI T, UEDA W. Soot trapping and combustion on nanofibrous perovskite LaMnO3 catalysts under a continuous flow of soot [J]. Appl Catal B: Environ, 2010, 93: 383–386. DOI: 10.10 16/j.apcatb.2009.10.012.

    Article  Google Scholar 

  6. ZHU Xin-hua, LIU Zhi-guo, MING Nai-ben. Perovskite oxide nanotubes: Synthesis, structural characterization, properties and applications [J]. J Mater Chem, 2010, 20: 4015–4030. DOI: 10.1039/b923119f.

  7. WANG J, MANIVANNAN A, WU N. Sol-gel derived La0.6Sr0.4CoO3 nanoparticles, nanotubes, nanowires and thin films [J]. Thin Solid Films, 2008, 517: 582–587. DOI: 10.1016/j.tsf.2008.06.095.

    Article  Google Scholar 

  8. CHEN X, TANG Y, FANG L, ZHANG H, HU C, ZHOU H. Self-assembly growth of flower-like BiFeO3 powders at low temperature [J]. J Mater Sci: Mater Electron, 2012, 23: 1500–1503. DOI: 10.1007/s10854-011-0617-1.

    Google Scholar 

  9. WANG Wan-jun, BI Jin-hong, WU Ling, LI Zhao-Hui, FU Xian-zhi. Hydrothermal synthesis and catalytic performances of a new photocatalyst CaSnO3 with microcube morphology [J]. Scripta Mater, 2009, 60: 186–189. DOI: 10.1016/ j.scriptamat.2008.10.001.

    Article  Google Scholar 

  10. DENG Ji-guang, ZHANG Lei, DAI Hong-xing, AU Chaktong. A Study on the relationship between low-temperature reducibility and catalytic performance of single-crystalline La0.6Sr0.4MnO3+δ microcubes for toluene combustion [J]. Catal Lett, 2009, 130: 622–629. DOI: 10.1007/s10562-009-9901-6.

    Article  Google Scholar 

  11. NAKASHIMA K, KERA M, FUJII I, WADA S. A new approach for the preparation of SrTiO3 nanocubes [J]. Ceram Int, 2013, 39: 3231–3234. DOI: 10.1016/j.ceramint.2012.10. 009.

    Article  Google Scholar 

  12. LAMMINEN J, KIVISAARI J, LAMPINEN M J, VIITANEN M, VUORISALO J. Preparation of air electrodes and long run tests [J]. J Electrochem Soc, 1991, 138: 905–908. DOI: 10.1149/1.2085745.

    Article  Google Scholar 

  13. XIA Xi, PAN Cun-xin. Peparation and characteristics of nanophase LaCoyMn1-YO3 by solid state reaction [J]. Chinese Journal of Applied Chemistry, 2001, 18: 96–99. http://yyhx.ciac.jl.cn/CN/article/downloadArticleFile.do?attachType=PDF&id=8799. (in Chinese)

    Google Scholar 

  14. WANG Kai-tuo, WU Xue-hang, WU Wen-wei, LI Yong-ni, LIAO Sen. Synthesis of perovskite LaCoO3 by thermal decomposition of oxalates: Phase evolution and kinetics of the thermal transformation of the precursor [J]. Ceram Int, 2014, 40: 5997. DOI: 10.1016/j.ceramint.2013.11.048.

    Article  Google Scholar 

  15. FARHADI S, SEPAHVAND S. Microwave-assisted solidstate decomposition of Laai][Co(CN)6]·5H2O precursor: A simple and fast route for the synthesis of single-phase perovskite-type LaCoO3 nanoparticles [J]. J Alloy Compd, 2010, 489: 586–591. DOI: 10.1016/j.jallcom.2009.09.117.

    Article  Google Scholar 

  16. SCHAAK R E, MALLOUK T E. Perovskites by design: A toolbox of solid-state reactions [J]. Chem Mater, 2002, 14: 1455–1471. DOI: 10.1021/cm010689m.

    Article  Google Scholar 

  17. RUDSKAYA A G, PUSTOVAYA L E, KOFANOVA N B, KUPRIYANOV M F. Specific features of La1-xMnO3 solid state synthesis [J] J Struct Chem, 2005, 46: 647–651. DOI: 10.1007/s10947-006-0183-1.

    Article  Google Scholar 

  18. BHELLA S S, KUTI L M, LI Q, THANGADURAI V. Electrical transport properties of In-doped Ce1-xInxO2-δ (x=0.1; 0.2) [J]. Dalton Trans, 2009: 9520–9528. DOI: 10.1039/ B910335J.

    Google Scholar 

  19. ISUPOVA L A, ALIKINA G M, TSYBULYA S V, BOLDYREVA N N, KRYUKAVA G N, YAKAVLEVA I S, ISUPOV V P, SADYKOV V A. Real structure and catalytic activity of La1-xSrxCoO3 perovskites [J]. Int J Inorg Mater, 2001, 3: 559–562. DOI: 10.1016/S1466-6049(01)00062-9.

    Article  Google Scholar 

  20. WONG Y J, HASSAN J, HASHIM M. Dielectric properties, impedance analysis and modulus behavior of CaTiO3 ceramic prepared by solid state reaction [J]. J Alloy Compd, 2013, 571: 138–144. DOI: 10.1016/j.jallcom.2013. 03.123.

    Article  Google Scholar 

  21. LIU Lai-jun, ZHENG Shao-ying, HUANG Rui-jing, SHI Dan-ping, HUANG Yan-min, WU Shuang-shuang, LI Yun-hua, FANG Liang, HU Chang-zheng. Na0.5K0.5NbO3 and 0.9Na0.5K0.5NbO3–0.1Bi0.5Na0.5TiO3 nanocrystalline powders synthesized by low-temperature solid-state reaction [J]. Adv Powder Technol, 2013, 24: 908–912. DOI: 10.1016/j.apt. 2013.01. 001.

    Article  Google Scholar 

  22. ABLAT A, WU R, MAMAT M, LI J, MUHEMMED E, SI C, WU R, WANG J, QIAN H, IBRAHIM K. Structural analysis and magnetic properties of Gd doped BiFeO3 ceramics [J]. Ceram Int, 2014, 40: 14083–14089. DOI: 10.1016/j.ceramin t.2014.05.137.

    Article  Google Scholar 

  23. BHALLA A S, GUO R, ROY R. The perovskite structure—A review of its role in ceramic science and technology [J]. Mater Res Innov, 2000, 4: 3–26. DOI: 10.1007/s100190000 062.

    Article  Google Scholar 

  24. ZHANG S, XIA R, SHROUT T R, ZANG G, WANG J. Piezoelectric properties in perovskite 0.948(K0.5Na0.5)NbO3–0.052LiSbO3 lead-free ceramics [J]. J Appl Phys, 2006, 100: 104108–6. DOI: 10.1063/1.2382348.

  25. NAVALE S C, SAMUEL V, RAVI V. A coprecipitation technique to prepare LiNbO3 powders [J]. Ceram Int, 2006, 32: 847–848. DOI: 10.1016/j.ceramint.2005.05.015.

    Article  Google Scholar 

  26. JADHAV A D, GAIKWAD A B, SAMUEL V, RAVI V. A low temperature route to prepare LaFeO3 and LaCoO3 [J]. Mater Lett, 2007, 61: 2030–2032. DOI: 10.1016/j.matlet. 2006.08.009.

    Article  Google Scholar 

  27. MA J, THEINGI M, CHEN Q, WANG W, LIU X, ZHANG H. Influence of synthesis methods and calcination temperature on electrical properties of La1-xCaxMnO3 (x=0.33 and 0.28) ceramics [J]. Ceram Int, 2013, 39: 7839–7843. DOI: 10.1016/j.ceramint.2013.03.044.

    Article  Google Scholar 

  28. VEITH M, MATHUR S, LECERF N, HUCH V, DECKER T. Sol-gel synthesis of nano-scaled BaTiO3, BaZrO3 and BaTi0.5Zr0.5O3 oxides via single-source alkoxide precursors and semi-alkoxide routes [J]. J Sol-Gel Sci Technol, 2000, 15: 145–158. DOI: 10.1023/A:100879541.

    Article  Google Scholar 

  29. CHILIBON I, MARAT J N. Ferroelectric ceramics by sol–gel methods and applications: A review [J]. J Sol-Gel Sci Technol, 2012, 64: 571–611. DOI: 10.1007/s10971-012-2891-7.

    Article  Google Scholar 

  30. SHIMIZU Y, UEMURA K, MATSUDA H, MIURA N, YAMAZOE N. Bi-functional oxygen electrode using large surface area La1-xCaxCoO3 for rechargeable metal-air battery [J] J Electrochem Soc, 1990, 137: 3430–3433. DOI: 10. 11 49/1.2086234.

    Article  Google Scholar 

  31. ZHU Jun-jiang, YANG Xiang-guang, XU Xue-lian, WEI Ke-mei. Active site structure of NO decomposition on perovskite(-like) oxides: An investigation from experiment and density functional theory [J] J Phys Chem C, 2007, 111: 1487–1490. DOI: 10.1021/jp0662101.

    Article  Google Scholar 

  32. GRAÇA M P F, PREZAS P R, COSTA M M, VALENTE M A. Structural and dielectric characterization of LiNbO3 nanosize powders obtained by Pechini method [J]. J Sol-Gel Sci Technol, 2012, 64: 78–85. DOI: 10.1007/s10971-012- 2829–0.

    Article  Google Scholar 

  33. MARINŠEK M, ZUPAN K, MAÈEK J. Ni–YZ cermet anodes prepared by citrate/nitrate combustion synthesis [J]. J Power Sources, 2002, 106: 178–188. DOI: 10.1016/S0378- 7753(01)01056-4.

    Article  Google Scholar 

  34. CHAKROBORTY A, DAS S A, MAITI B, MAITI H S. Preparation of low-temperature sinterable BaCe0.8Sm0.2O3 powder by autoignition technique [J]. Mater Lett, 2002, 57: 862–867. DOI: 10.1016/S0167-577X(02)00886-8.

    Article  Google Scholar 

  35. DEGANELLO F, MARCÌ G, DEGANELLO G. Citrate–nitrate auto-combustion synthesis of perovskite-type nanopowders: A systematic approach [J]. J Eur Ceram Soc, 2009, 29: 439–450. DOI: 10.1016/j.jeurceramsoc.2008.06. 012.

    Article  Google Scholar 

  36. JIANG L, LIU W, WU A, XU J, LIU Q, QIAN G, ZHANG H. Low-temperature combustion synthesis of nanocrystalline HoFeO3 powders via a sol–gel method using glycin [J]. Ceram Int, 2012, 38: 3667–3672. DOI: 10.1016/j.ceramint. 2012.01.007.

    Article  Google Scholar 

  37. BENALI A, AZIZI S, BEJAR M, DHAHRI E, GRAÇA M F P. Structural, electrical and ethanol sensing properties of double-doping LaFeO3 perovskite oxides [J]. Ceram Int, 2014, 40: 14367–14373. DOI: 10.1016/j.ceramint.2014.06. 029.

    Article  Google Scholar 

  38. JI Lu-dong, ZHANG Jing-ji, GAO Yue-e, LI Yan-li, WANG Jiang-ying. Dielectric properties of Ba0.5Sr0.5TiO3–MgO composites synthesized by a citrate gel in situ process [J]. Ceram Int, 2014, 40: 11419–11422. DOI: 10.1016/ j.ceramint.2014.03.084.

    Article  Google Scholar 

  39. YANG Xin, REN Zhao-hui, CHAO Chun-ying, JIANG Shan, DENG Shi-qi, SHEN Ge, WEI Xiao, HAN Gao-rong. Monodisperse hollow perovskite BaTiO3 nanostructures prepared by a sol–gel–hydrothermal method [J]. Ceram Int, 2014, 40: 9663–9670. DOI: 10.1016/j.ceramint.2014.02.047.

    Article  Google Scholar 

  40. GUO H Y, LIN J G. Ferroelectric domain structure of highly textured BiFeO3 microcrystal films prepared by hydrothermal method [J]. J Cryst Growth, 2013, 364: 145–148. DOI: 10.1016/j.jcrysgro.2012.11.028.

    Article  Google Scholar 

  41. ZHANG Jing-ji, SHEN Bo, ZHAI Ji-wei, YAO Xi. Microwave dielectric properties and low sintering temperature of Ba0.5Sr0.5TiO3–Mg2TiO4 composites synthesized in situ by the hydrothermal method [J]. Ceram Int, 2013, 39: 5943–5948. DOI: 10.1016/j.ceramint.2012. 11.089.

    Article  Google Scholar 

  42. BASAVALINGU B, VIJAYA K M S, GIRISH H N, YODA S. Hydrothermal synthesis and characterization of rare earth doped yttrium aluminium perovskite-R: YAlO3 (R=Nd, Eu and Er) [J]. J Alloy Compd, 2013, 552: 382–386. DOI: 10.1016/j.jallcom.2012. 10.091.

    Article  Google Scholar 

  43. SUN Zi-xiong, PU Yong-ping, DONG Zi-jing, HU Yao, LIU Xiao-yan, WANG Pei-kui, GE Meng. Dielectric and piezoelectric properties and PTC behavior of Ba0.9Ca0.1Ti0.9Zr0.1O3-xLa ceramics prepared by hydrothermal method [J]. Mater Lett, 2014, 118: 1–4. DOI: 10.1016/j.matlet.2013.12.043.

    Article  Google Scholar 

  44. FUENTES S, CÉSPEDES F, PADILLA-CAMPOS L, DIAZROGUETT D E. Chemical and structural analysis related to defects in nanocrystalline Ba1-xSrxTiO3 grown via hydrothermal sol—gel [J]. Ceram Int, 2014, 40: 4975–4984. DOI: /10.1016/j.ceramint.2013.09.134.

    Article  Google Scholar 

  45. BOUKRIBA M, SEDIRI F, GHARBI N. Hydrothermal synthesis and electrical properties of NaNbO3 [J]. Mater Res Bull, 2013, 48: 574–580. DOI: 10.1016/j.materresbull.2012. 11.046.

    Article  Google Scholar 

  46. ZHOU Z, GUO L, YE F. Hydrothermal synthesis, magnetism and resistivity of orthorhombic perovskite manganates Y1-xCaxMnO3 (x=0, 0.07, 0.55, 0.65) [J]. J Alloy Compd, 2013, 571: 123–131. DOI: 10.1016/j.jallcom.2013.03.220.

    Article  Google Scholar 

  47. WANG Shan, HUANG Ke-ke, ZHENG Bei-ning, ZHANG Jia-qi, FENG Shou-hua. Mild hydrothermal synthesis and physical property of perovskite Sr doped LaCrO3 [J]. Mater Lett, 2013, 101: 86–89. DOI: 10.1016/j.matlet.2013.03.083.

    Article  Google Scholar 

  48. MAKOVEC D, GORŠ AK T, ZUPAN K, LISJAK D. Hydrothermal synthesis of La1-xSrxMnO3 dendrites [J]. J Cryst Growth, 2013, 375: 78–83. DOI: 10.1016/j.jcrysgro. 2013.04.019.

    Article  Google Scholar 

  49. KUMAR R D, JAYAVEL R. Low temperature hydrothermal synthesis and magnetic studies of YMnO3 nanorods [J]. Mater Lett, 2013, 113: 210–213. DOI: 10.1016/j.matlet. 2013.09.070.

    Article  Google Scholar 

  50. ZHANG D, SHI F, CHENG J, YANG X, YAN E, CAO M. Preparation and characterization of orthorhombic NaNbO3 long bar [J]. Ceram Int, 2014, 40: 14279–14285. DOI: 10.1016/j.ceramint.2014.06.018.

    Article  Google Scholar 

  51. WANG J, DURUSSEL A, SANDU C S, SAHINI M G, HE Z, SETTER N. Mechanism of hydrothermal growth of ferroelectric PZT nanowires [J]. J Cryst Growth, 2012, 347: 1–6. DOI: 10.1016/j.jcrysgro.2012.03.022.

    Article  Google Scholar 

  52. AI Z, LU G, LEE S. Efficient photocatalytic removal of nitric oxide with hydrothermal synthesized Na0.5Bi0.5TiO3 nanotubes [J]. J Alloy Compd, 2014, 613: 260–266. DOI: 10.1016/j.jallcom.2014.06.039.

    Article  Google Scholar 

  53. XU Gang, ZHANG Yan-fang, HE Wan-bo, ZHAO Yan-gang, LIU Yong, SHEN Ge, HAN Gao-rong. Single-crystal lead titanate perovskite dendrites derived from single-crystal lead titanate pyrochlore dendrites by phase transition at elevated temperature [J]. J Cryst Growth, 2012, 346: 101–105. DOI: 10.1016/j.jcrysgro.2012.02.016.

    Article  Google Scholar 

  54. CHOI B H, PARK S, PARK B K, CHUN H H, KIMA Y, Controlled synthesis of La1-xSrxCrO3 nanoparticles by hydrothermal method with nonionic surfactant and their ORR activity in alkaline medium [J]. Mater Res Bull, 2013, 48: 3651–3656. DOI: 10.1016/j.materresbull. 2013.04.084.

    Article  Google Scholar 

  55. JI K, DAI H, DENG J, SONG L, XIE S, HAN W. Glucose-assisted hydrothermal preparation and catalytic performance of porous LaFeO3 for toluene combustion [J]. J Solid State Chem, 2013, 199: 164–170. DOI: 10.1016/j.jssc. 2012.12.017.

    Article  Google Scholar 

  56. WANG Z, ZHU J, XU W, SUI J, PENG H, TANG X. Microwave hydrothermal synthesis of perovskite BiFeO3 nanoparticles: An insight into the phase purity during the microwave heating process [J]. Mater Chem Phys, 2012, 135: 330–333. DOI: 10.1016/j.matchemphys.2012.04.053.

    Article  Google Scholar 

  57. PONZONI C, ROSA R, CANNIO M, BUSAGLIA V, FINOCCHIO E, NANNI P, LEONELLI C. Optimization of BFO microwave-hydrothermal synthesis: Influence of process parameters [J]. J Alloy Compd, 2013, 558: 150–159. DOI: 10.1016/j.jallcom.2013.01.039.

    Article  Google Scholar 

  58. LÓPEZ-JUÁREZ R, CASTAÑEDA-GUZMÁN R, VILLAFUERTE-CASTREJÓN M E. Fast synthesis of NaNbO3 and K0.5Na0.5NbO3 by microwave hydrothermal method [J]. Ceram Int, 2014, 40: 14757–14764. DOI: 10.1016/j.ceramint.2014.06.065.

    Article  Google Scholar 

  59. HE H, LIU M, DAI H, QIU W, ZI X. An investigation of NO/CO reaction over perovskite-type oxide La0.8Ce0.2B0.4Mn0.6O3 (B=Cu or Ag) catalysts synthesized by reverse microemulsion [J]. Catal Today, 2007, 126: 290–295. DOI: 10.1016/j.cattod.2007.06.004.

    Article  Google Scholar 

  60. AMAN D, ZAKI T, MIKHAIL S, SELIM S A. Synthesis of a perovskite LaNiO3 nanocatalyst at a low temperature using single reverse microemulsion [J]. Catal Today, 2011, 164: 209–213. DOI: 10.1016/j.cattod.2010.11.034.

  61. ZHAO Yun-long, XU Lin, Mai Li-qiang, HAN Chun-hua, An Qin-you, XU Xu, LIU Xue, ZHANG Qing-jie. Hierarchical mesoporous perovskite La0.5Sr0.5CoO2.9 nanowires with ultrahigh capacity for Li-air batteries [J]. PNAS, 2012, 109: 19569–19574. DOI: 10.1073/ pnas.1210315109.

    Article  Google Scholar 

  62. SHOJAEI S, HASSANZADEH-TABRIZI S A, GHASHANG M. Reverse microemulsion synthesis and characterization of CaSnO3 nanoparticles [J]. Ceram Int, 2014, 40: 9609–9613. DOI: 10.1016/j.ceramint.2014.02.037.

    Article  Google Scholar 

  63. ABAZARI R, SANATI S. Perovskite LaFeO3 nanoparticles synthesized by the reverse microemulsion nanoreactors in the presence of aerosol-OT: Morphology, crystal structure, and their optical properties [J]. Superlattice Microst, 2013, 64: 148–157. DOI: 10.1016/j.spmi.2013.09.017.

    Article  Google Scholar 

  64. WANG Y, REN J, WANG Y, ZHANG F, LIU X, GUO Y, LU G. Nanocasted synthesis of mesoporous LaCoO3 perovskite with extremely high surface area and excellent activity in methane combustion [J]. J Phys Chem C, 2008, 112: 15293–15298. DOI: 10.1021/jp8048394.

    Article  Google Scholar 

  65. WANG N, YU X, WANG Y, CHU W, LIU M. A comparison study on methane dry reforming with carbon dioxide over LaNiO3 perovskite catalysts supported on mesoporous SBA-15, MCM-41 and silica carrier [J]. Catal Today, 2013, 212: 98–107. DOI: 10.1016/j.cattod.2012.07.022.

    Article  Google Scholar 

  66. GAO Bao-zu, DENG Ji-guang, LIU Yu-xi, ZHAO Zhen-xuan, LI Xin-wei, WANG Yuan, DAI Hong-xing. Mesoporous LaFeO3 catalysts for the oxidation of toluene and carbon monoxide [J]. Chinese J Catal, 2013, 34: 2223–2229. DOI: 10.1016/S1872-2067(12)60689-5.

    Article  Google Scholar 

  67. WANG Yong-xia, CUI Xiang-zhi, LI Yong-sheng, SHU Zhu, CHEN Hang-rong, SHI Jian-lin. A simple co-nanocasting method to synthesize high surface area mesoporous LaCoO3 oxides for CO and NO oxidations [J]. Micropor Mesopor Mat, 2013, 176: 8–15. DOI: 10.1016/j. micromeso.2013.03.033.

    Article  Google Scholar 

  68. XU Jun-feng, LIU Jian, ZHAO Zhen, ZHENG Jian-xiong, ZHANG Gui-zhen, DUAN Ai-jun, JIANG Gui-yuan. Three-dimensionally ordered macroporous LaCoxFe1-xO3 perovskite-type complex oxide catalysts for diesel soot combustion [J]. Catal Today, 2010, 153: 136–142. DOI: 10.1016/j.cattod.2010.01.063.

    Article  Google Scholar 

  69. SADAKANE M, HORIUCHI T, KATO N, SASAKI K, UEDA W. Preparation of three-dimensionally ordered macroporous perovskite-type lanthanum–iron-oxide LaFeO3 with tunable pore diameters: High porosity and photonic property [J]. J Solid State Chem, 2010, 183: 1365–1371. DOI: 10.1016/j.jssc.2010.04.012.

    Article  Google Scholar 

  70. XIAO Ping, ZHU Jun-jiang, Li Hai-long, JIANG Wen, WANG Tao, ZHU Yu-jun, ZHAO Yan-xi, LI Jin-lin. Effect of textural structure on the catalytic performance of LaCoO3 for CO oxidation [J]. Chem Cat Chem, 2014, 6: 1774–1781. DOI: 10.1002/cctc. 201402064.

  71. LIU Y, DAI H, DU Y, DENG J, ZHANG L, ZHAO Z, AU C T. Controlled preparation and high catalytic performance of three-dimensionally ordered macroporous LaMnO3 with nanovoid skeletons for the combustion of toluene [J]. J Catal, 2012, 287: 149–160. DOI: 10.1016/j.jcat.2011.12.015.

    Article  Google Scholar 

  72. JI K, DAI H, DENG J, ZHANG L, WWANG F, JIANG H, AU C T. Three-dimensionally ordered macroporous SrFeO3-d with high surface area: Active catalysts for the complete oxidation of toluene [J]. Appl Catal A: Gen, 2012, 425–426: 153–160. DOI: 10.1016/j.apcata.2012.03.013.

    Google Scholar 

  73. LIU Yu-xi, DAI Hong-xing, DU Yu-cheng, DENG Ji-guang, ZHANG Lei, ZHAO Zhen-xuan. Lysine-aided PMMAtemplating preparation and high performance of threedimensionally ordered macroporous LaMnO3 with mesoporous walls for the catalytic combustion of toluene [J]. Appl Catal B: Environ, 2012, 119–120: 20–31. DOI: 10.1016/j.apcatb.2012.02.010.

    Article  Google Scholar 

  74. ZHAO Z, DAI H, DENG J, DU Y, LIU Y, ZHANG L. Three-dimensionally ordered macroporous La0.6Sr0.4FeO3-δ: High-efficiency catalysts for the oxidative removal of toluene [J]. Micropor Mesopor Mat, 2012, 163: 131–139. DOI: 10.1016/j.micromeso.2012.07.006.

    Article  Google Scholar 

  75. ARANDIYAN H, DAI H, DENG J, LIU Y, BAI B, WANG Y, LI X, XIE S, LI J. Three-dimensionally ordered macroporous La0.6Sr0.4MnO3 with high surface areas: Active catalysts for the combustion of methane [J]. J Catal, 2013, 307: 327–339. DOI: 10.1016/j.jcat.2013.07.013.

    Article  Google Scholar 

  76. ZHAO Zhen-xuan, DAI Hong-xing, DENG Ji-guang, DU Yu-cheng, LIU Yu-xi, ZHANG Lei. Preparation of threedimensionally ordered macroporous La0.6Sr0.4Fe0.8Bi0.2O3-δ and their excellent catalytic performance for the combustion of toluene [J]. J Mol Catal A: Chem, 2013, 366: 116–125. DOI: 10.1016/j.molcata.2012.09. 014.

    Article  Google Scholar 

  77. LIU Y, DAI H, DENG J, LI X, WANG Y, ARANDIYAN H, XIE S, YANG H, GUO G. Au/3DOM La0.6Sr0.4MnO3: Highly active nanocatalysts for the oxidation of carbon monoxide and toluene [J]. J Catal, 2013, 305: 146–153. DOI: 10.1016/ j.jcat.2013.04.025.

    Article  Google Scholar 

  78. LI Wei, LIU Jun, ZHAO Dong-yuan. Mesoporous materials for energy conversion and storage devices [J]. Nature Reviews Materials, 2016, 1: 16023–16040. DOI: 10.1038/natrevmats.2016.23.

    Article  Google Scholar 

  79. SALANNE M, ROTENBERG B, NAOI K, KANEKO K, TABERNA P L, GREY C P, DUNN B, SIMON P. Efficient storage mechanisms for building better supercapacitors [J]. Nature Energy, 2016, 1: 16070–16080. DOI: 10.1038/ nenergy.2016.70.

    Article  Google Scholar 

  80. GEWIRTH A A, THORUM M S. Electroreduction of dioxygen for fuel-cell applications: Materials and Challenges [J]. Inorg Chem, 2010, 49: 3557–3566. DOI: 10.1021/ ic9022486.

    Article  Google Scholar 

  81. LI J, CHEN J, WANG H, REN Y, LIU K, TANG Y, SHAO M. Fe/N co-doped carbon materials with controllable structure as highly efficient electrocatalysts for oxygen reduction reaction in Al-air batteries [J]. Energy Storage Mater, 2017, 8: 49–58. DOI: 10.1016/j.ensm.2017.03.007.

    Article  Google Scholar 

  82. LI J, ZHOU Z, LIU K, LI F, PENG Z, TANG Y. Co3O4/Co-N-C modified ketjenblack carbon as an advanced electrocatalyst for Al-air batteries [J]. J Power Sources, 2017, 343: 30–38. DOI: 10.1016/j.jpowsour.2017.01.018.

    Article  Google Scholar 

  83. SONG J, REN Y, LI J, HUANG X, CHENG F, TANG Y, WANG H. Core-shell Co/CoNx@C nanoparticles enfolded by Co-N doped carbon nanosheets as a highly efficient electrocatalyst for oxygen reduction reaction [J]. Carbon, 2018, 138: 300–308.

    Article  Google Scholar 

  84. LI Yan-guang, GONG Ming, LIANG Yong-ge, FENG Ju, KIM Ji-Eun, WANG Hai-liang, HONG Guo-song, ZHANG Bo, DAI Hong-jie. Advanced zinc-air batteries based on high-performance hybrid electrocatalysts [J]. Nat Commun, 2013, 4: 1805–1812. DOI: 10.1038/ncomms2812.

    Article  Google Scholar 

  85. LEE J S, KIM ST, CAO R, CHOI N S, LIU M, LEE K T, CHO J. Metal–air batteries with high energy density: Li–air versus Zn–air [J]. Adv Energy Mater, 2011, 1: 34–50. DOI: 10.1002/aenm.201000010.

    Article  Google Scholar 

  86. DONG H, KIROS Y, NORÉ US D. An air-metal hydride battery using MmNi3.6Mn0.4Al0.3Co0.7 in the anode and a perovskite in the cathode [J]. Inter J Hydrogen Energy, 2010, 35: 4336. DOI: 10.1016/j.ijhydene.2010.02.007.

    Article  Google Scholar 

  87. FU G, YAN X, CHEN Y, XU L, SUN D, LEE J M, TANG Y. Boosting bifunctional oxygen electrocatalysis with 3D graphene aerogel-supported Ni/MnO Particles [J]. Adv Mater, 2018, 30: 1704609. DOI: 10.1002/adma.201704609.

  88. WANG H, WANG W, GUI M, ASIF M, WANG Z, YU Y, XIAO J, LIU H. Uniform Fe3O4/Nitrogen-doped mesoporous carbon spheres derived from ferric citrate-bonded melamine resin as an efficient synergistic catalyst for oxygen reduction [J]. ACS Appl Mater Interfaces, 2017, 9: 335–344. DOI: 10.1021/acsami.6b11608.

    Article  Google Scholar 

  89. HUANG S F, HSU Y Y, CHANG C J, HSU C S, SUEN N T, CHAN T S, CHEN M H. Unraveling geometrical site confinement in highly efficient iron-doped electrocatalysts toward oxygen evolution reaction [J]. Adv Energy Mater, 2018, 8: 1701686. DOI: doi.org/10.1002/aenm.201701686.

  90. LI Y, YANG J, HUANG J, ZHOU Y, XU K, ZHAO N, CHENG X. Soft template-assisted method for synthesis of nitrogen and sulfur co-doped three-dimensional reduced graphene oxide as an efficient metal free catalyst for oxygen reduction reaction [J]. Carbon, 2017, 122: 237–246. DOI: 10. 1016/j.carbon.2017.06.046.

    Article  Google Scholar 

  91. BIRSELL M, PIRJAMALI M, KIROS Y. La0.6Ca0.4CoO3, La0.1Ca0.9MnO3 and LaNiO3 as bifunctional oxygen electrodes [J]. Electrochim Acta, 2002, 47: 1651–1660. DOI

    Article  Google Scholar 

  92. NEBURCHILOV V, WANG H J, MARTIN J J, QU W. A review on air cathodes for zinc–air fuel cells [J]. J Power Sources, 2010, 195: 1271–1291. DOI: 10.1016/j.jpowsour. 2009.08.100.

    Article  Google Scholar 

  93. PEÑA M A, FIERRO J L G. Chemical structures and performance of perovskite oxides [J]. Chem Rev, 2001, 101: 1981–2018. DOI: 10.1021/cr980129f.

    Article  Google Scholar 

  94. SWETTE L, KACKLEY N, MCCATTY S A. Oxygen electrodes for rechargeable alkaline fuel cells. III [J]. J Power Sources, 1991, 36: 323–339. DOI: 10.1016/0378- 7753(91)87010-9.

    Article  Google Scholar 

  95. KANNAN A M, SHUKLA A K, SATHYANARAYANA S. Oxide-based bifunctional oxygen electrode for rechargeable metal/air batteries [J]. J Power Sources, 1989, 25: 141–150. DOI: 10.1016/0378-7753(89)85006-2.

    Article  Google Scholar 

  96. SWETTE L, KACKLEY N. Oxygen electrodes for rechargeable alkaline fuel cells–II [J]. J Power Sources, 1990, 29: 423–436. DOI: 10.1016/0378-7753(90)85015-5.

    Article  Google Scholar 

  97. SUNTIVICH J, GASTEIGER H A, YABUUCHI N, NAKANISHI H, GOODENOUGH J B, HORN Y S. Design principles for oxygen-reduction activity on perovskite oxide catalysts for fuel cells and metal-air batteries [J]. Nature Chem, 2011, 3: 546–550. DOI: 10.1038/NCHEM.1069.

    Article  Google Scholar 

  98. ZHANG T, IMANISHI N, TAKEDA Y, YAMAMOTO O. Aqueous lithium/air rechargeable batteries [J]. Chem Lett, 2011, 40: 668–673. DOI: 10.1246/cl.2011.668.

    Article  Google Scholar 

  99. OHKUMA H, UECHI I, IMANISHI N, HIRANO A, TAKEDA Y, YAMAMOTO O. Carbon electrode with perovskite-oxide catalyst for aqueous electrolyte lithium-air secondary batteries [J]. J Power Sources, 2013, 223: 319–324. DOI: 10.1016/j.jpowsour.2012.09.028.

    Article  Google Scholar 

  100. CHANG Y M, WU P W, WU C Y, HSIEH Y F, CHEN J Y. Mechanical alloying preparation of La0.6Ca0.4CoIr0.25O3.5-d as a bifunctional electrocatalyst in alkaline electrolyte [J]. Electrochem Solid State Lett, 2008, 11: B47-B50. DOI: 10.1149/1.2835200.

  101. CHANG Y M, HSIEH Y C, WU P W, LAI C H, CHANG T Y. Enhancement of bifunctional catalysis by Ir doping of La0.6Ca0.4CoO3 perovskites [J]. Mater Lett, 2008, 62: 4220–4222. DOI: 10.1016/j. matlet.2008.06.040.

    Article  Google Scholar 

  102. CHANG Y M, WU P W, WU C Y, HSIEN Y C. Synthesis of La0.6Ca0.4Co0.8Ir0.2O3 perovskite for bi-functional catalysis in an alkaline electrolyte [J]. J Power Sources, 2009, 189: 1003–1007. DOI: 10.1016/j.jpowsour.2008.12.101.

    Article  Google Scholar 

  103. ZHUANG Shu-xin, HUANG Ke-long, HUANG Cheng-huan, HUANG Hong-xia, LIU Su-qin, FAN Min. Preparation of silver-modified La0.6Ca0.4CoO3 binary electrocatalyst for bi-functional air electrodes in alkaline medium [J]. J Power Sources, 2011, 196: 4019–4025. DOI: 10.1016/j.jpowsour. 2010.11.056.

    Article  Google Scholar 

  104. DENG J G, ZHANG L, DAI H X, AU C T. In situ hydrothermally synthesized mesoporous LaCoO3/SBA-15 catalysts: High activity for the complete oxidation of toluene and ethyl acetate [J]. Appl Catal A, 2009, 352: 43–49. DOI: 10.1016/j.apcata.2008.09.037.

    Article  Google Scholar 

  105. HU Jie, WANG Li-na, SHI Li-na, HUANG Hao. Preparation of La1-xCaxMnO3 perovskite-graphene composites as oxygen reduction reaction electrocatalyst in alkaline medium [J]. J Power Sources, 2014, 269: 144–151. DOI: 10.1016/j. jpowsour.2014.07.004.

    Article  Google Scholar 

  106. PARK H W, LEE D U, ZAMANI P, SEO M H, NAZAR L F, CHEN Z. Electrospun porous nanorod perovskite oxide/ nitrogen-doped graphene composite as a bi-functional catalyst for metal air batteries [J]. Nano Energy, 2014, 10: 192–200. DOI: 10.1016/j.nanoen.2014.09.009.

    Article  Google Scholar 

  107. LI J, ZHOU N, SONG J, FU L, YAN J, TANG Y, WANG H. Cu-MOF-derived Cu/Cu2O nanoparticles and CuNxCy species to boost oxygen reduction activity of Ketjenblack carbon in Al-air battery [J]. ACS Sustainable Chem Eng, 2018, 6: 413–421. DOI: 10.1021/acssuschemeng.7b02661.

    Article  Google Scholar 

  108. LI J, CHEN J, WAN H, XIAO J, TANG Y, LIM M, WANG H. Boosting oxygen reduction activity of Fe-N-C by partial copper substitution to iron in Al-air batteries [J]. Appl Catal B: Environ, 2019, 242: 209–217. DOI: 10.1016/j.apcatb. 2018.09.044.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shu-xin Zhuang  (庄树新).

Additional information

Foundation item: Projects(51504212, 21573184, 51703061) supported by the National Natural Science Foundation of China; Project (2018J01521) supported by the Natural Science Foundation of Fujian Province, China; Project(fma2017202) supported by the Open Fund of Fujian Provincial Key Laboratory of Functional Materials and Applications (Xiamen University of Technology), China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhuang, Sx., He, Jy., Zhang, Wp. et al. Preparation and application of perovskite-type oxides for electrocatalysis in oxygen/air electrodes. J. Cent. South Univ. 26, 1387–1401 (2019). https://doi.org/10.1007/s11771-019-4095-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-019-4095-6

Key words

关键词

Navigation