Skip to main content
Log in

Numerical simulation for Darcy-Forchheimer 3D rotating flow subject to binary chemical reaction and Arrhenius activation energy

基于二元化学反应和 Arrhenius 活化能的 Darcy-Forchheimer 流体三维旋转数值模拟

  • Article
  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Three-dimensional Darcy-Forchheimer nanoliquid flow in the presence of rotating frame and activation energy is inspected. Flow is developed through linearly stretching of the surface. Convection of heat and mass exchange is given due consideration. The novel characteristics in regards to Brownian dispersion and thermophoresis are retained. The variation in partial differential framework (PDEs) to nonlinear ordinary differential framework (ODEs) is done through reasonable transformations. Governing differential frameworks have been computed in edge of NDSolve. Discussion regarding thermal field and concentration distribution for several involved parameters is pivotal part. Physical amounts like surface drag coefficients, transfer of heat and mass rates are portrayed by numeric esteems. It is noticed that impacts of porosity parameter and Forchheimer number on the thermal and concentration fields are quite similar. Both temperature and associated thermal layer thickness are enhanced for larger porosity parameter and Forchheimer number. Temperature and concentration fields exhibit similar trend for the higher values of rotational parameter. Effects of thermal and concentration Biot numbers on the temperature and concentration fields are qualitatively similar. Higher Prandtl and Schmidt numbers correspond to stronger temperature and concentration fields. Larger nondimensional activation energy, temperature difference parameter and fitted rate constant yield weaker concentration field. Brownian motion parameter for temperature and concentration has reverse effects while similar trend is observed via thermophoresis parameter.

摘要

研究了旋转框架和活化能存在下的三维Darcy-Forchheimer 纳米流动。考虑了热对流和质量交换, 保留了布朗色散和热泳的新特征。通过合理的变换实现了偏微分系统(PDES)向非线性常微分系统(ODES)的转换。选择 NDSolve 的边界条件, 计算了控制差分方程。重点讨论了几个相关参数下的热场和浓度分布。用数值来描述表面阻力系数、热量传递和质量交换率等物理量。结果表明, 孔隙度和 Forchheimer 数对热场和浓度场的影响是相似的。随着孔隙度的增大和 Forchheimer 数的增加, 温度升高和相应的热层厚度增大。温度场和浓度场随着旋转角的增大而呈现相似的变化趋势。热和浓度 Biot数对温度场和浓度场的影响在本质上是相似的。较高的 Prandtl 和 Schmidt 数对应较强的温度场和浓度场。较大的无量纲活化能、温差和拟合速率常数对应较弱的浓度场。布朗运动参数对温度和浓度的作用是相反的, 而热泳参数的作用是相似的。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. CHOI S U S, EASTMAN J A. Enhancing thermal conductivity of fluids with nanoparticles [C]// ASME International Mechanical Engineering Congress & Exposition. San Francisco: American Society of Mechanical Engineers, 1995.

    Google Scholar 

  2. BUONGIORNO J. Convective transport in nanofluids [J]. ASME Journal of Heat Transfer, 2006, 128: 240–250.

    Article  Google Scholar 

  3. ZAIB A, BHATTACHARYY K, SHAFIE S. Unsteady boundary layer flow and heat transfer over an exponentially shrinking sheet with suction in a copper-water nanofluid [J]. Journal of Central South University, 2015, 22: 4856–4863.

    Article  Google Scholar 

  4. ASHRAF M B, HAYAT T, ALSAEDI A, SHEHZAD S A. Convective heat and mass transfer in MHD mixed convection flow of Jeffrey nanofluid over a radially stretching surface with thermal radiation [J]. Journal of Central South University, 2015, 22: 1114–1123.

    Article  Google Scholar 

  5. SHEHZAD S A, HUSSAIN T, HAYAT T, RAMZAN M, ALSAEDI A. Boundary layer flow of third grade nanofluid with Newtonian heating and viscous dissipation [J]. Journal of Central South University, 2015, 22: 360–367.

    Article  Google Scholar 

  6. HAYAT T, AZIZ A, MUHAMMAD T, AHMAD B. Influence of magnetic field in three-dimensional flow of couple stress nanofluid over a nonlinearly stretching surface with convective condition [J]. PloS One, 2015, 10: e0145332.

  7. SHEHZAD N, ZEESHAN A, ELLAHI R, VAFAI K. Convective heat transfer of nanofluid in a wavy channel: Buongiorno’s mathematical model [J]. Journal of Molecular Liquids, 2016, 222: 446–455.

    Article  Google Scholar 

  8. HAYAT T, AZIZ A, MUHAMMAD T, ALSAEDI A. On magnetohydrodynamic three-dimensional flow of nanofluid over a convectively heated nonlinear stretching surface [J]. International Journal of Heat and Mass Transfer, 2016, 100: 566–572.

    Article  Google Scholar 

  9. HAYAT T, AZIZ A, MUHAMMAD T, ALSAEDI A. Numerical study for nanofluid flow due to a nonlinear curved stretching surface with convective heat and mass conditions [J]. Results in Physics, 2017, 7: 3100–3106.

    Article  Google Scholar 

  10. HSIAO K L. Micropolar nanofluid flow with MHD and viscous dissipation effects towards a stretching sheet with multimedia feature [J]. International Journal of Heat and Mass Transfer, 2017, 112: 983–990.

    Article  Google Scholar 

  11. HAYAT T, AZIZ A, MUHAMMAD T, ALSAEDI A. A revised model for Jeffrey nanofluid subject to convective condition and heat generation/absorption [J]. PloS One, 2017, 12: e0172518.

  12. SHEIKHOLESLAMI M. Influence of magnetic field on Al2O3-H2O nanofluid forced convection heat transfer in a porous lid driven cavity with hot sphere obstacle by means of LBM [J]. Journal of Molecular Liquids, 2018, 263: 472–488.

    Article  Google Scholar 

  13. AZIZ A, ALSAEDI A, MUHAMMAD T, HAYAT T. Numerical study for heat generation/absorption in flow of nanofluid by a rotating disk [J]. Results in Physics, 2018, 8: 785–792.

    Article  Google Scholar 

  14. SHEIKHOLESLAMI M, JAFARYAR M, LI Z. Second law analysis for nanofluid turbulent flow inside a circular duct in presence of twisted tape turbulators [J]. Journal of Molecular Liquids, 2018, 263: 489–500.

    Article  Google Scholar 

  15. HAYAT T, AZIZ A, MUHAMMAD T, ALSAEDI A. Numerical simulation for three-dimensional flow of Carreau nanofluid over a nonlinear stretching surface with convective heat and mass conditions [J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2019, 41: 55.

    Article  Google Scholar 

  16. BESTMAN A R. Natural convection boundary layer with suction and mass transfer in a porous medium [J]. International Journal of Energy Research, 1990, 14: 389–396.

    Article  Google Scholar 

  17. MAKINDE O D, OLANREWAJU P O, CHARLES W M. Unsteady convection with chemical reaction and radiative heat transfer past a flat porous plate moving through a binary mixture [J]. Africka Matematika, 2011, 22: 65–78.

    Article  MathSciNet  MATH  Google Scholar 

  18. MALEQUE K A. Effects of exothermic/endothermic chemical reactions with Arrhenius activation energy on MHD free convection and mass transfer flow in presence of thermal radiation [J]. Journal of Thermodynamics, 2013, 2013: 692516.

  19. AWAD F G, MOTSA S, KHUMALO M. Heat and mass transfer in unsteady rotating fluid flow with binary chemical reaction and activation energy [J]. PloS One, 2014, 9: e107622.

  20. ABBAS Z, SHEIKH M, MOTSA S S. Numerical solution of binary chemical reaction on stagnation point flow of Casson fluid over a stretching/shrinking sheet with thermal radiation [J]. Energy, 2016, 95: 12–20.

    Article  Google Scholar 

  21. SHAFIQUE Z, MUSTAFA M, MUSHTAQ A. Boundary layer flow of Maxwell fluid in rotating frame with binary chemical reaction and activation energy [J]. Results in Physics, 2016, 6: 627–633.

    Article  Google Scholar 

  22. ANURADHA S, YEGAMMAI M. MHD radiative boundary layer flow of nanofluid past a vertical plate with effects of binary chemical reaction and activation energy [J]. Global Journal of Pure and Applied Mathematics, 2017, 13: 6377–6392.

    Google Scholar 

  23. KHAN M I, QAYYUM S, HAYAT T, WAQAS M, KHAN M I, ALSAEDI A. Entropy generation minimization and binary chemical reaction with Arrhenius activation energy in MHD radiative flow of nanomaterial [J]. Journal of Molecular Liquids, 2018, 259: 274–283.

    Article  Google Scholar 

  24. DARCY H. Les Fontaines Publiques De La Ville De Dijon [M]. Paris: Victor Dalmont, 1856. (in French)

    Google Scholar 

  25. FORCHHEIMER P. Wasserbewegung durch boden [J]. Zeitschrift des Vereins deutscher Ingenieure, 1901, 45: 1782–1788.

    Google Scholar 

  26. MUSKAT M. The flow of homogeneous fluids through porous media[M]. Edwards, MI, 1946.

    Google Scholar 

  27. PAL D, MONDAL H. Hydromagnetic convective diffusion of species in Darcy-Forchheimer porous medium with non-uniform heat source/sink and variable viscosity [J]. International Communications in Heat and Mass Transfer, 2012, 39: 913–917.

    Article  Google Scholar 

  28. BAKAR S A, ARIFIN N M, NAZAR R, ALI F M, POP I. Forced convection boundary layer stagnation-point flow in Darcy-Forchheimer porous medium past a shrinking sheet [J]. Frontiers in Heat Mass Transfer, 2016, 7: 38.

    Google Scholar 

  29. UMAVATHI J C, OJJELA O, VAJRAVELU K. Numerical analysis of natural convective flow and heat transfer of nanofluids in a vertical rectangular duct using Darcy-Forchheimer-Brinkman model [J]. International Journal of Thermal Sciences, 2017, 111: 511–524.

    Article  Google Scholar 

  30. SHEIKHOLESLAMI M. Influence of Lorentz forces on nanofluid flow in a porous cavity by means of non-Darcy model [J]. Engineering Computations, 2017, 34: 2651–2667.

    Article  Google Scholar 

  31. HAYAT T, AZIZ A, MUHAMMAD T, ALSAEDI A. Darcy-Forchheimer three-dimensional flow of Williamson nanofluid over a convectively heated nonlinear stretching surface [J]. Communications in Theoretical Physics, 2017, 68: 387–394.

    Article  Google Scholar 

  32. HAYAT T, HAIDER F, MUHAMMAD T, ALSAEDI A. Darcy-Forchheimer squeezed flow of carbon nanotubes with thermal radiation [J]. Journal of Physics and Chemistry of Solids, 2018, 120: 79–86.

    Article  Google Scholar 

  33. HAYAT T, AZIZ A, MUHAMMAD T, ALSAEDI A. An optimal analysis for Darcy-Forchheimer 3D flow of Carreau nanofluid with convectively heated surface [J]. Results in Physics, 2018, 9: 598–608.

    Article  Google Scholar 

  34. WANG C Y. Stretching a surface in a rotating fluid [J]. Journal of Applied Mathematics and Physics, 1988, 39: 177–185.

    MATH  Google Scholar 

  35. TAKHAR H S, CHAMKHA A J, NATH G. Flow and heat transfer on a stretching surface in a rotating fluid with a magnetic field [J]. International Journal of Thermal Sciences, 2003, 42: 23–31.

    Article  Google Scholar 

  36. JAVED T, SAJID M, ABBAS Z, ALI N. Non-similar solution for rotating flow over an exponentially stretching surface [J]. International Journal of Numerical Methods for Heat and Fluid Flow, 2011, 21: 903–908.

    Article  MathSciNet  Google Scholar 

  37. ZAIMI K, ISHAK A, POP I. Stretching surface in rotating viscoelastic fluid [J]. Applied Mathematics and Mechanics (English Edition), 2013, 34: 945–952.

    Article  MathSciNet  Google Scholar 

  38. ROSALI H, ISHAK A, NAZAR R, POP I. Rotating flow over an exponentially shrinking sheet with suction [J]. Journal of Molecular Liquids, 2015, 211: 965–969.

    Article  Google Scholar 

  39. MUSTAFA M, HAYAT T, ALSAEDI A. Rotating flow of Maxwell fluid with variable thermal conductivity: An application to non-Fourier heat flux theory [J]. International Journal of Heat and Mass Transfer, 2017, 106: 142–148.

    Article  Google Scholar 

  40. HAYAT T, MUHAMMAD T, MUSTAFA M, ALSAEDI A. An optimal study for three dimensional flow of Maxwell nanofluid subject to rotating frame [J]. Journal of Molecular Liquids, 2017, 229: 541–547.

    Article  Google Scholar 

  41. MUSTAFA M, HAYAT T, ALSAEDI A. Rotating flow of Oldroyd-B fluid over stretchable surface with Cattaneo-Christov heat flux: Analytic solutions [J]. International Journal of Numerical Methods for Heat and Fluid Flow, 2017, 27: 2207–2222.

    Article  Google Scholar 

  42. HAYAT T, AZIZ A, MUHAMMAD T, ALSAEDI A. Darcy-Forchheimer flow of nanofluid in a rotating frame [J]. International Journal of Numerical Methods for Heat and Fluid Flow, 2018, https://doi.org/10.1108/HFF-01-2018-0021.

    Google Scholar 

  43. HAYAT T, AZIZ A, MUHAMMAD T, ALSAEDI A. Numerical simulation for Darcy-Forchheimer three-dimensional rotating flow of nanofluid with prescribed heat and mass flux conditions [J]. Journal of Thermal Analysis and Calorometry, 2018, DOI: https://doi.org/10.1007/s10973-018-7847-x.

    Google Scholar 

  44. JAVED M, FAROOQ M, AHMAD S, ANJUM A. Melting heat transfer with radiative effects and homogeneous-heterogeneous reaction in thermally stratified stagnation flow embedded in porous medium [J]. Journal of Central South University, 2018, 25(11): 2701–2711. DOI: https://doi.org/10.1007/s11771-018-3947-9.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arsalan Aziz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hayat, T., Aziz, A., Muhammad, T. et al. Numerical simulation for Darcy-Forchheimer 3D rotating flow subject to binary chemical reaction and Arrhenius activation energy. J. Cent. South Univ. 26, 1250–1259 (2019). https://doi.org/10.1007/s11771-019-4084-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-019-4084-9

Key words

关键词

Navigation