Skip to main content
Log in

Darcy–Forchheimer flow under rotating disk and entropy generation with thermal radiation and heat source/sink

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

This article investigates the second law of thermodynamics for chemically reactive Sisko nanofluid by a rotating disk saturated with non-Darcy porous medium. Thermophoresis and Brownian motion on irreversibility has been examined through Buongiorno model. The novel features of nonlinear thermal radiation, Joule heating, MHD and non-uniform heat source/sink are accounted. Modified Arrhenius model is executed to characterize the impact of activation energy. The governing flow equations are solved and validated numerically by adopting Runge–Kutta–Fehlberg method. It is noticed from the present analysis that irreversibility rate and Bejan number have reverse behavior for Brinkman number. Growing behavior of concentration is witnessed for greater estimations of activation energy variable. Total entropy generation has significant impact on reaction rate constant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28

Similar content being viewed by others

Abbreviations

\(B_{1}\) :

Magnetic field strength

\({\hat{\text{B}}\text{e}}\) :

Bejan number

\({\text{Br}}\) :

Brinkman number

\(\left( {\hat{C},\hat{C}_{\infty } } \right)\) :

Nanoparticle and ambient volume fraction

\(C_{{{\text{F}}_{1} }}\) :

Skin friction coefficient

\(\left( {D_{\text{B}} ,D_{\text{T}} } \right)\) :

Brownian and thermophoretic diffusion coefficients

\(\hat{E}_{\text{a}}\) :

Activation energy parameter

\(\hat{F}_{\text{r}}\) :

Forchheimer number

\(F_{1} \left( {\xi_{1} } \right)\) :

Similarity function

\(F_{2}\) :

Non-uniform inertia coefficient

\(K^{*}\) :

Permeability of porous space

\(K_{\text{r}}^{2}\) :

Reaction rate constant

\(k_{\text{i}}\) :

Boltzmann constant

\(k_{1}^{*}\) :

Mean absorption coefficient

Le:

Lewis number

\(M_{2}\) :

Magnetic parameter

\(\hat{N}_{1 }\) :

Buoyancy ratio forces

\(\left( {\hat{N}_{\text{b}} ,\hat{N}_{\text{t}} } \right)\) :

Brownian and thermophoresis parameters

\(\hat{N}_{\text{G}}\) :

Entropy generation rate

\(\hat{N}_{\text{r}}\) :

Radiation parameter

\({\text{Nu}}_{{{\text{z}}_{1} }}\) :

Local Nusselt number

\(p\) :

Fitted rate constant

\(\Pr\) :

Prandtl number

\(\left( {S_{1} ,S_{2} } \right)\) :

Space- and temperature-dependent heat source/sink coefficients

\(S_{3}\) :

Stretching parameter

Sc:

Schmidt number

\(S_{\text{a}}\) :

Material parameter

\({\text{Sh}}_{{{\text{z}}_{1} }}\) :

Sherwood number

\(\left( {\hat{T}_{\text{w}} ,\hat{T}_{\infty } } \right)\) :

Surface and ambient temperature

\(\left( {\hat{\beta }_{\text{T}} ,\hat{\beta }_{\text{C}} } \right)\) :

Nonlinear thermal and solutal convection parameters

\(\alpha_{\text{f}}\) :

Thermal diffusivity

\(\delta_{1}\) :

Temperature difference

\(\delta_{2}\) :

Concentration difference variable

\(\sigma_{2}\) :

Electrical conductivity of base fluid

\(\xi_{\text{s}}\) :

Mixed convection parameter

\(\xi_{2}\) :

Chemical reaction parameter

\(\eta_{1}\) :

Reaction rate constant

\(\left( {\varGamma_{1} ,\varGamma_{3} } \right)\) :

Linear thermal expansion coefficients

\(\left( {\varGamma_{2} ,\varGamma_{4} } \right)\) :

Nonlinear solutal expansion coefficients

\(\varTheta_{1}\) :

Dimensionless temperature

\(\phi_{1}\) :

Dimensionless concentration

\(\hat{\varOmega }_{1}\) :

Angular velocity

References

  1. Bejan A. Entropy generation through heat and fluid flow. New York: Wiley; 1982.

    Google Scholar 

  2. Bejan A. Entropy generation minimization. New York: CRC Press; 1996.

    Google Scholar 

  3. Ijaz M, Ayub M, Malik MY, Khan H, Aly S. Entropy analysis in nonlinearly convective flow of Sisko model in presence of Joule heating and activation energy: Buongiorno model. Phys Scr. 2020. https://doi.org/10.1088/1402-4896/ab2dc7.

    Article  Google Scholar 

  4. Demirel Y, Kahraman R. Thermodynamic analysis of convective heat transfer in an annular packed bed. Int J Heat Fluid Flow. 2000;2:442–8.

    Article  Google Scholar 

  5. Saleem S, Abd El-Aziz M. Entropy generation and convective heat transfer of radiated non-Newtonian power-law fluid past an exponentially moving surface under slip effects. Eur Phys J Plus. 2019. https://doi.org/10.1140/epjp/i2019-12656-4.

    Article  Google Scholar 

  6. Ijaz M, Ayub M, Khan H. Entropy generation and activation energy mechanism in nonlinear radiative flow of Sisko nanofluid: rotating disk. Heliyon. 2019. https://doi.org/10.1016/j.heliyon.2019.e01863.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Qing J, Bhatti MM, Abbas MA, Rashidi MM, Ali ME. Entropy generation on MHD Casson nanofluid flow over a porous stretching/shrinking surface. Entropy. 2016. https://doi.org/10.3390/e18040123.

    Article  Google Scholar 

  8. Ahmad S, Nadeem S, Ullah N. Entropy generation and temperature-dependent viscosity in the study of SWCNT–MWCNT hybrid nanofluid. Appl Nanosci. 2020. https://doi.org/10.1007/s13204-020-01306-0.

    Article  Google Scholar 

  9. Riaz A, Bhatti MM, Ellahi R, Zeshan A, Sait SM. Mathematical analysis on an asymmetrical wavy motion of blood under the influence entropy generation with convective boundary conditions. Symmetry. 2020. https://doi.org/10.3390/sym12010102.

    Article  Google Scholar 

  10. Ting TW, Hung YM, Guo N. Entropy generation of viscous dissipative nanofluid convection in asymmetrically heated porous microchannels with solid-phase heat generation. Energy Convers Manag. 2015;105:731–45.

    Article  CAS  Google Scholar 

  11. Muhammad T, Waqas H, Khan SA, Ellahi R, Sait SM. Significance of nonlinear thermal radiation in 3D Eyring-Powell nanofluid flow with Arrhenius activation energy. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-09459-4.

    Article  Google Scholar 

  12. Saleem S, Nadeem S, Awais M. Time-dependent second-order viscoelastic fluid flow on rotating cone with heat generation and chemical reaction. J Aero Eng. 2016. https://doi.org/10.1061/(asce)as.1943-5525.0000599.

    Article  Google Scholar 

  13. Abolbashari MH, Freidoonimehr N, Nazari F, Rashidi MM. Entropy analysis for an unsteady MHD flow past a stretching permeable surface in nano-fluid. Adv Powder Technol. 2014;267:256–67.

    Article  CAS  Google Scholar 

  14. Riaz A, Khan SUD, Zeeshan A, Khan SU, Hassan M, Muhammad T. Thermal analysis of peristaltic flow of nanosized particles within a curved channel with second-order partial slip and porous medium. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-09454-9.

    Article  Google Scholar 

  15. Waqas H, Khan SU, Bhatti MM, Imran M. Significance of bioconvection in chemical reactive flow of magnetized Carreau–Yasuda nanofluid with thermal radiation and second-order slip. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-09462-9.

    Article  Google Scholar 

  16. Ahmad S, Nadeem S. Flow analysis by Cattaneo–Christov heat flux in the presence of Thomson and Troian slip condition. Appl Nanosci. 2020. https://doi.org/10.1007/s13204-020-01267-4.

    Article  Google Scholar 

  17. Ullah N, Nadeem S, Khan AU. Finite element simulations for natural convective flow of nanofluid in a rectangular cavity having corrugated heated rods. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-09378-4.

    Article  Google Scholar 

  18. Pantokratoras A. Natural convection along a vertical isothermal plate with linear and nonlinear Rosseland thermal radiation. Int J Therm Sci. 2014;84:151–7.

    Article  Google Scholar 

  19. Ijaz M, Ayub M. Simulation of magnetic dipole and dual stratification in radiative flow of ferromagnetic Maxwell fluid. Heliyon. 2019. https://doi.org/10.1016/j.heliyon.2019.e01465.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Nadeem S, Abbas N, Elmasry Y, Malik MY. Numerical analysis of water based CNTs flow of micropolar fluid through rotating frame. Comput Methods Prog Biomed. 2019. https://doi.org/10.1016/j.cmpb.2019.105194.

    Article  Google Scholar 

  21. Hayat T, Qayyum S, Imtiaz M, Alsaedi A. Radiative flow due to a stretchable rotating disk with variable thickness. Result Phys. 2017;7:156–65.

    Article  Google Scholar 

  22. Saleem S, Nadeem S, Rashidi MM, Raju CSK. An optimal analysis of radiated nanomaterial flow with viscous dissipation and heat source. Microsyst Technol. 2019. https://doi.org/10.1007/s00542-018-3996-x.

    Article  Google Scholar 

  23. Bhatti MM, Khalique CM, Bég TA, Bég OA, Kadir A. Numerical study of slip and radiative effects on magnetic Fe3O4-water-based nanofluid flow from a nonlinear stretching sheet in porous media with Soret and Dufour diffusion. Mod Phys Lett B. 2019. https://doi.org/10.1142/s0217984920500268.

    Article  Google Scholar 

  24. Parida SK, Panda S, Rout BR. MHD boundary layer slip flow and radiative nonlinear heat transfer over a flat plate with variable fluid properties and thermophoresis. Alex Eng J. 2015;54:941–53.

    Article  Google Scholar 

  25. Yousaf MA, Ismael HF, Abbas T, Ellahi R. Numerical study of momentum and heat transfer of MHD Carreau nanofluid over exponentially stretched plate with internal heat source/sink and radiation. Heat Transf Res. 2019;50:649–58.

    Article  Google Scholar 

  26. Ijaz M, Ayub M, Zubair M, Malik MY. Numerical simulation of Joule heating and Arrhenius activation energy for nonlinear radiative flow of Casson nanofluid with Cattaneo-Christov heat flux model. Phys Scr. 2019. https://doi.org/10.1088/1402-4896/ab41ac.

    Article  Google Scholar 

  27. Riaz A, Zeeshan A, Bhatti MM, Ellahi R. Peristaltic propulsion of Jeffrey nano-liquid and heat transfer through a symmetrical duct with moving walls in a porous medium. Phys A Stat Mech Appl. 2019. https://doi.org/10.1016/j.physa.2019.123788.

    Article  Google Scholar 

  28. Hayat T, Ijaz M, Qayyum S, Ayub M, Alsaedi A. Mixed convective stagnation point flow of nanofluid with Darcy-Fochheimer relation and partial slip. Result Phys. 2018;9:771–8.

    Article  Google Scholar 

  29. Nadeem S, Alblawi A, Muhammad N, Alarifi I. A computational model for suspensions of motile micro-organisms in the flow of ferrofluid. J Mol Liq. 2019. https://doi.org/10.1016/j.molliq.2019.112033.

    Article  Google Scholar 

  30. Ijaz M, Ayub M, Malik MY, Alqarni MS. Cattaneo-Christov double diffusion model for viscoelastic nanofluid with activation energy and nonlinear thermal radiation. Multidisciplin Model Mater Struct. 2019. https://doi.org/10.1108/MMMS-03-2019-0046.

    Article  Google Scholar 

  31. Ijaz M, Yousaf M, El Shafey AM. Arrhenius activation energy and Joule heating for Walter-B fluid with Cattaneo-Christov double-diffusion model. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-09270-1.

    Article  Google Scholar 

  32. Zubair M, Ijaz M, Abbas T, Riaz A. Analysis of modified Fourier law in flow of ferromagnetic Powell-Eyring fluid considering two equal magnetic dipoles. Can J Phys. 2018;97:772–6.

    Article  Google Scholar 

  33. Forchheimer P. Wasserbewegung durch boden. Z Ver D Ing. 1901;45:1782–8.

    Google Scholar 

  34. Muskat M. The flow of homogeneous fluids through porous media. Burgess Hill: Edwards; 1936.

    Google Scholar 

  35. Raju CSK, Saleem S, Mamatha SU, Hussain I. Heat and mass transport phenomena of radiated slender body of three revolutions with saturated porous: Buongiorno’s model. Int J Therm Sci. 2018;132:309–15.

    Article  Google Scholar 

  36. Pal D, Mondal H. Hydromagnetic convective diffusion of species in Darcy–Forchheimer porous medium with non-uniform heat source/sink and variable viscosity. Int Commun Heat Mass Transf. 2012;39:913–7.

    Article  Google Scholar 

  37. Nazari S, Ellahi R, Sarafraz MM, Safaei MR, Asgari A, Akbari OA. Numerical study on mixed convection of a non-Newtonian nanofluid with porous media in a two lid-driven square cavity. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08841-1.

    Article  Google Scholar 

  38. Ijaz M, Ayub M. Thermally stratified flow of Jeffrey fluid with homogeneous-heterogeneous reactions and non-Fourier heat flux model. Heliyon. 2019. https://doi.org/10.1016/j.heliyon.2019.e02303.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Ijaz M, Ayub M, Zubair M, Riaz A. On stratified flow of ferromagnetic nanofluid with heat generation/absorption. Phys Scr. 2018. https://doi.org/10.1088/1402-4896/aaf6df.

    Article  Google Scholar 

  40. Das S, Chakraborty S, Jana RN, Makinde OD. Entropy analysis of unsteady magneto-nanofluid flow past accelerating stretching sheet with convective boundary condition. Appl Math Mech. 2015;36:1593–610.

    Article  Google Scholar 

  41. Bhatti MM, Ellahi R, Zeeshan A, Marin M, Ijaz N. Numerical study of heat transfer and Hall current impact on peristaltic propulsion of particle-fluid suspension with compliant wall properties. Mod Phys Lett B. 2019. https://doi.org/10.1142/s0217984919504396.

    Article  Google Scholar 

  42. Shafee A, Sheikholeslami M, Jafaryar M, Selimefendigil F, Bhatti MM, Babazadeh H. Numerical modeling of turbulent behavior of nanomaterial exergy loss and flow through a circular channel. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-09568-0.

    Article  Google Scholar 

  43. Jafaryar M, Sheikholeslami M, Li Z, Moradi R. Nanofuid turbulent flow in a pipe under the effect of twisted tape with alternate axis. J Therm Anal Calorim. 2019;135(1):305–23. https://doi.org/10.1007/s10973-018-7093-2.

    Article  CAS  Google Scholar 

  44. Turkyilmazoglu M. Determination of the correct range of physical parameters in the approximate analytical solutions of nonlinear equations using the adomian decomposition method. Mediterr J Math. 2016;13:4019–37.

    Article  Google Scholar 

  45. Andersson HI, Korte E, Meland R. Flow of a power-law fluid over a rotating disk revisited. Fluid Dyn Res. 2001;28:75–88.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Misbah Ijaz.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nadeem, S., Ijaz, M. & Ayub, M. Darcy–Forchheimer flow under rotating disk and entropy generation with thermal radiation and heat source/sink. J Therm Anal Calorim 143, 2313–2328 (2021). https://doi.org/10.1007/s10973-020-09737-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-09737-1

Keywords

Navigation