Skip to main content
Log in

Magnetohydrodynamic flow and heat transfer impact on ZnO-SAE50 nanolubricant flow over an inclined rotating disk

倾斜旋转盘对 ZnO-SAE50 纳米磁流体流动和传热的影响

  • Article
  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

The present article has been fine-tuned with the investigation of mixed convection Darcy-Forchheimer flow of ZnO-SAE50 oil nanolubricant over an inclined rotating disk under the influence of uniform applied magnetic field applied to various industries. The current study has been enriched with additional consideration of slip flow, thermal radiation, viscous dissipation, Joulian dissipation and internal heating. In view of augmentation of thermal conductivity of nanolubricant, a new micro-nano-convection model namely Patel model has been invoked. The specialty of this model involves the effects of specific surface area and nano-convection due to Brownian motion of nanoparticles, kinetic theory based micro-convection, liquid layering and particle concentration. Suitably transformed governing equations have been solved numerically by using Runge-Kutta-Fehlberg scheme. An analysis of the present study has shown that applied magnetic field, porosity of the medium, velocity slip and inertia coefficient account for the slowing down of radial as well as tangential flow of ZnO-SAE50 oil nanolubricant, thereby leading to an improvement in velocity and thermal boundary layers.

摘要

考虑工业中外加磁场对倾斜旋转盘的影响, 对氧化锌-SAE50 纳米润滑剂的 Darcy-Forchheimer 混合对流进行了详细研究。研究中同时考虑了滑移流动、热辐射、黏性耗散、Joulian 耗散和内部加热 的影响, 对当前研究进行了改进。考虑到纳米润滑剂热导率的增大, 提出了一种新的微纳米对流模型, 即 Patel 模型。该模型的特点是由于纳米粒子的布朗运动、基于动力学理论的微对流、液体分层和粒 子聚集而引起的比表面积和纳米对流的变化。利用 Runge-Kutta-Fehlberg 方法, 对适当变换的控制方 程进行了数值求解。分析表明, 外加磁场、介质的孔隙度、速度滑移和惯性系数减慢了ZnO-SAE50 纳米润滑剂的径向和切向流动, 从而导致速度和热边界层的改善。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. XUAN Y, LI Q. Investigation on convective heat transfer and flow features of nanofluids [J]. J Heat Transfer, 2003, 125, 151–155. DOI: https://doi.org/10.1115/1.1532008.

    Article  Google Scholar 

  2. ZHANG Xiao-yan, WANG Ming-hua, CHEN Zhong-yi, XIAO P, WEBLEY P, ZHAI Yu-chun. Preparation, characterization and catalytic performance of Cu nanowire catalyst for CO2 hydrogenation [J]. Journal of Central South University, 2018, 25(4): 691–700. DOI: https://doi.org/10.1007/s11771-018-3773-0.

    Article  Google Scholar 

  3. MOUADJI Y, BRADAI M A, YOUNES R, SADEDDINE A, BENABBAS A. Influence of heat treatment on microstructure and tribological properties of flame spraying Fe-Ni-Al alloy coating [J]. Journal of Central South University, 2018, 25(3): 473–481. DOI: https://doi.org/10.1007/s11771-018-3751-6.

    Article  Google Scholar 

  4. BHATTI M M. Effects of thermal radiation and electromagnetohydrodynamics on viscous nanofluid through a Riga plate [J]. Multidiscipline Modeling in Materials and Structures, 2016, 12(4): 605–618. DOI: https://doi.org/10.1108/MMMS-07-2016-0029.

    Article  Google Scholar 

  5. BHATTI M M, RASHIDI M M. Effects of thermo-diffusion and thermal radiation on Williamson nanofluid over a porous shrinking/stretching sheet [J]. J Mol Liq, 2016, 221, 567–573. DOI: https://doi.org/10.1016/j.molliq.2016.05.049.

    Article  Google Scholar 

  6. BHATTI M M, MISHRA S R, RASHIDI M M. A mathematical model of MHD nanofluid flow having gyrotactic microorganisms with thermal radiation and chemical reaction effects [J]. Neural Comp and Appl, 2016, 30(4): 1237–1249. DOI: https://doi.org/10.1007/s00521-016-2768-8.

    Article  Google Scholar 

  7. BHATTI M M, RASHIDI M M, POP I. Entropy generation with nonlinear heat and mass transfer on MHD boundary layer over a moving surface using SLM [J]. Nonlinear Engineering, 2017, 6(1): 43–52. DOI: https://doi.org/10.1515/nleng-2016-0021.

    Article  Google Scholar 

  8. NAYAK M K. MHD 3D flow and heat transfer analysis of nanofluid by shrinking surface inspired by thermal radiation and viscous dissipation [J]. Int J Mech Sci, 2017, 124, 185–193. DOI: https://doi.org/10.1016/j.ijmecsci.2017.03.014.

    Article  Google Scholar 

  9. FU Liang, MA Juncai, SHI Shu-yun. Determination of trace impurity elements in MnZn ferrite powder by direct current glow discharge mass spectroscopy [J]. Journal of Central South University, 2018, 25(7): 1590–1597. DOI: https://doi.org/10.1007/s11771-018-3851-3.

    Article  Google Scholar 

  10. LU Yong, ZHOU Yue-zhen, CHEN Xiu-min, LI Zi-yong, YU Qing-chun, LIU Da-chun, YANG Bin, XU Bao-qiang. Thermodynamic analysis and dynamics simulation on reaction of Al2O and AlCl2 with carbon under vacuum [J]. Journal of Central South University, 2016, 23(2): 286–292. DOI: https://doi.org/10.1007/s11771-016-3072-6.

    Article  Google Scholar 

  11. TOGHRAIE D, CHAHARSOGHI V A, AFRAND M J. Measurement of thermal conductivity of ZnO-TiO2/EG hybrid nanofluid [J]. Thermal Anal Calorimetry, 2016, 125, 527–535. DOI: https://doi.org/10.1007/s10973-016-5436-4.

    Article  Google Scholar 

  12. SEPYANI K, AFRAND M, ESFE M H. An experimental evaluation of the effect of ZnO nanoparticles on the rheological behavior of engine oil [J]. J Mol Liq, 2017, 236:198-204. DOI: https://doi.org/10.1016/j.molliq.2017.04.016.

    Google Scholar 

  13. HAYAT T, JAVED M, IMTIAZ M, ALSAEDI A. Double stratification in the MHD flow of a nanofluid due to a rotating disk with variable thickness [J]. Eur Phys J Plus, 2017, 132, 146–156. DOI: https://doi.org/10.1140/epip/i2017-11408-x.

    Article  Google Scholar 

  14. MAHIAN O, OZTOP H F, POP I, MAHMUD S, WONGWISES S. Entropy generation between two vertical cylinders in the presence of MHD flow subjected to constant wall temperature [J]. Int Comm Heat Mass Transf, 2013, 44, 87–92. DOI.https://doi.org/10.1016/j.icheatmasstransfer.2013.03.005.

    Article  Google Scholar 

  15. OZTOP H F, MOBEDI M, ABU-NADA E, POP I. A heat line analysis of natural convection in a square inclined enclosure filled with a CuO nanofluid under non-uniform wall heating condition [J]. Int J Heat Mass Transf, 2012, 55(19, 20): 5076–7086. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2012.05.007.

    Article  Google Scholar 

  16. YOUSOFV R, DERAKHSHAN S, GHASEMI K, SIAVASHI M. MHD transverse mixed convection and entropy generation study of electromagnetic pump including a nanofluid using 3D LBM simulation [J]. Int J Mech Sci, 2017, 133, 73–90. DOI: https://doi.org/10.1016/j.ijmecsci.2017.08.034.

    Article  Google Scholar 

  17. GHASEMI K, SIAVASHI M. MHD nanofluid free convection and entropy generation in porous enclosures with different conductivity ratios [J]. J Magn Magn Mat, 2017, 442, 474–490. DOI: https://doi.org/10.1016/j.jmmm.2017.07.028.

    Article  Google Scholar 

  18. SIAVASHI M, RASAM H, IZADI A J. Similarity solution of air and nanofluid impingement cooling of a cylindrical porous heat sink [J]. Therm Anal Calorim, 2018. DOI: https://doi.org/10.1007/s10973-018-7540-0.

    Google Scholar 

  19. SIAVASHI M, GHASEMI K, YOUSOFV R, DERAKHSHAN S. Computational analysis of SWCNH nanofluid-based direct absorption solar collector with a metal sheet [J]. Solar Energy, 2018, 170, 252–262. DOI: https://doi.org/10.1016/j.solener.2018.05.020.

    Article  Google Scholar 

  20. MAGHSOUDI P, SIAVASHI M. Application of nanofluid and optimization of pore size arrangement of heterogeneous porous media to enhance mixed convection inside a two-sided lid-driven cavity [J]. J Therm Anal Calorim, 2018. DOI: https://doi.org/10.1007/s10973-018-7335-3.

    Google Scholar 

  21. EMAMI R Y, SIAVASHI M, MOGHADDAM G S.The effect of inclination angle and hot wall configuration on Cu-water nanofluid natural convection inside a porous square cavity [J]. Adv Powder Technol, 2018, 29(3): 519–536. DOI: https://doi.org/10.1016/j.apt.2017.10.027.

    Article  Google Scholar 

  22. OZTOP H F, ABU-NADA E. Numerical study of natural convection in partially heated rectangular enclosures filled with nanofluid [J]. Int J Heat and Fluid Flow, 2008, 29, 1326–1336. DOI: https://doi.org/10.1016/j.ijheatfluidflow.2008.04.009.

    Article  Google Scholar 

  23. SELIMEFENDIGIL F, ÖXTOP H F. Identification of forced convection in pulsating flow at a backward facing step with a stationary cylinder subjected to nanofluid [J]. Int Comm in Heat Mass Transf, 2013, 45, 111–121. DOI: https://doi.org/10.1016/j.icheatmasstransfer.2013.04.016.

    Article  Google Scholar 

  24. ZHANG Qing-hui, HAO Zhi-yong, ZHENG Xu, YANG Wen-ying, MAO Jie. Mechanism and optimization of fuel injection parameters on combustion noise of DI diesel engine [J]. Journal of Central South University, 2016, 23(2): 379–393. DOI: https://doi.org/10.1007/s11771-016-3083-3.

    Article  Google Scholar 

  25. FORCHHEIMER P, DURCHBODEN W. Wasserbewegung durch boden [J]. Zeitschrift Ver. D Ing, 1901, 45, 1782–1788.

    Google Scholar 

  26. MUSKAT M, WYCKOFF R D. The flow of homogeneous fluids through porous media [M]. J. International Series in Physics. Ann Arbor, Michigan: Edwards, 1946.

    Google Scholar 

  27. SEDDEEK M A. Influence of viscous dissipation and thermophoresis on Darcy-Forchheimer mixed convection in a fluid saturated porous media [J]. J Colloid Interface Sci, 2006, 293, 137–142. DOI: https://doi.org/10.1016/j.jcis.2005.06.039.

    Article  Google Scholar 

  28. TIAN X Y, LI B W, ZHANG J K. The effects of radiation optical properties on the unsteady 2D boundary layer MHD flow and heat transfer over a stretching plate [J]. Int J Heat Mass Transf, 2017, 105, 109–123. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2016.09.060.

    Article  Google Scholar 

  29. AKBAR N S, KHAN Z H, NADEEM S. The combined effects of slip and convective boundary conditions on stagnation point flow of CNT suspended nanofluid over a stretching sheet [J] J Mol Liq, 2014, 196, 21–25. DOI: https://doi.org/10.1016/j.molliq.2014.03.006.

    Article  Google Scholar 

  30. TURKYILMAZOGLU M. Multiple solutions of heat and mass transfer of MHD slip flow for the viscoelastic fluid over a stretching sheet [J]. Int J Thermal Sc, 2011, 50, 2264–2276. DOI: https://doi.org/10.1016/j.ijthermalsci.2011.05.014.

    Article  Google Scholar 

  31. PANDEY A K, KUMAR M. Natural convection and thermal radiation influence on nanofluid flow over a stretching cylinder in a porous medium with viscous dissipation [J]. Alexandria Eng J, 2017, 56, 55–62. DOI: https://doi.org/10.1016/j.aej.2016.08.035.

    Article  Google Scholar 

  32. NAYAK M K, SHAW S, PANDEY V S, CHAMKHA A J. Combined effects of slip and convective boundary condition on MHD 3D stretched flow of nanofluid through porous media inspired by non-linear thermal radiation [J]. Indian J Phys, 2018, 92(1): 1017–1028. DOI: https://doi.org/10.1007/s12648-018-1188-2.

    Article  Google Scholar 

  33. NAYAK M K. Chemical reaction effect on MHD viscoelastic fluid over a stretching sheet through porous medium [J]. Meccanica, 2016, 51, 1699–1711. DOI: https://doi.org/10.1007/s11012-015-0329-3.

    Article  MathSciNet  MATH  Google Scholar 

  34. ZHANG J, LI B W, DONG H, LUO X H, LIN H. A combined method for solving 2D incompressible flow and heat transfer by spectral collocation method and artificial compressibility method [J]. Int J Heat Mass Transf, 2017, 112, 289–299. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2017.04.051.

    Article  Google Scholar 

  35. MOSAYEBIDORCHEH S, HATAMI M. Heat transfer analysis in carbon nanotube-water between rotating disks under thermal radiation conditions [J]. J Mol Liq, 2017, 240, 258–267. DOI: https://doi.org/10.1016/j.molliq.2017.05.085.

    Article  Google Scholar 

  36. HAYAT T, JAVED M, IMTIAZ M, ALSAEDI A. KHAN I. Convective flow of Jeffrey nanofluid due to two stretchable rotating disks [J]. J Mol Liq, 2017, 240, 291–302. DOI: https://doi.org/10.1016/j.molliq.2017.05.024.

    Article  Google Scholar 

  37. MUSTAFA M, KHAN J A. Numerical study of partial slip effects on MHD flow of nanofluids near a convectively heated stretchable rotating disk [J]. J Mol Liq, 2017, 234, 287–295. DOI: https://doi.org/10.1016/j.molliq.2017.03.087.

    Article  Google Scholar 

  38. DENG Yan-jun, HUANG Guang-jie, CAO Ling-fei, WU Xiao-dong, HUANG Li. Effect of ageing temperature on precipitation of Al-Cu-Li-Mn-Zr alloy [J]. Journal of Central South University, 2018, 25(6): 1340–1349. DOI: https://doi.org/10.1007/s11771-018-3830-8.

    Article  Google Scholar 

  39. IBRAHIM S M, LORENZINI G, VIJAYA KUMAR P, RAJU C S K. Influence of chemical reaction and heat source on dissipative MHD mixed convection flow of a Casson nanofluid over a nonlinear permeable stretching sheet [J]. Int J Heat Mass Transf, 2017, 111, 346–355. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2017.03.097.

    Article  Google Scholar 

  40. GANGA B, ANSARI S M Y, GANESH N V, HAKEEM ABDUL A K. MHD flow of Boungiorno model nanofluid over a vertical plate with internal heat generation/absorption [J]. Propulsion Power Research, 2016, 5(3): 211–222. DOI: https://doi.org/10.1016/j.jppr.2016.07.003.

    Article  Google Scholar 

  41. THUMMA T, BEG O A, KADIR A. Numerical study of heat source/sink effects on dissipative magnetic nanofluid flow from a non-linear inclined stretching/shrinking sheet [J]. J Mol Liq, 2017, 232, 159–163. DOI: https://doi.org/10.1016/j.molliq.2017.02.032.

    Article  Google Scholar 

  42. USMAN M, HAMID M, HAQ UL R, WANG W. Heat and fluid flow of water and ethylene-glycol based Cu-nanoparticles between two parallel squeezing porous disks: LSGM approach [J]. Int J Heat Mass Transf, 2018, 123, 888–895. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2018.03.030.

    Article  Google Scholar 

  43. POURMEHRAN O, GORJI RAHIMI M, GANJI D D. Heat transfer and flow analysis of nanofluid flow induced by a stretching sheet in the presence of an external magnetic field [J]. J Taiwan Inst Chem Eng, 2016, 65, 162–171. DOI: https://doi.org/10.1016/j.jtice.2016.04.035.

    Article  Google Scholar 

  44. PATEL H E, SUNDARARAJN T, PRADEEP T, DASGUPTA A, DASGUPTA N, DAS S K. A micro-convection model for thermal conductivity of nanofluids [J]. Pramana J Physics, 2005, 65, 863–869. DOI: https://doi.org/10.1007/BF02704086.

    Article  Google Scholar 

  45. SIBANDA P, MAKINDE O D. On steady MHD flow and heat transfer past a rotating disk in a porous medium with ohmic heating and viscous dissipation [J]. Int J Numer Meth Heat Fluid Flow, 2010, 20, 269–275. DOI: https://doi.org/10.1108/09615531011024039.

    Article  Google Scholar 

  46. HAYAT T, HAIDER F, MUHAMMADA T, ALSAEDI A. On Darcy-Forchheimer flow of carbon nanotubes due to a rotating disk [J]. Int J Heat Mass Transf, 2017, 112, 248–254. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2017.04.123.

    Article  Google Scholar 

  47. HAYAT T, QAYYUM S, ASAEDI A, AHMAD B. Significant consequences of heat generation/absorption and homogeneous-heterogeneous reactions in second grade fluid due to rotating disk [J]. Res in Phys, 2018, 8, 223–230. DOI: https://doi.org/10.1016/j.rinp.2017.12.012.

    Google Scholar 

  48. HAYAT T, HAIDER F, MUHAMMAD T, ALSAEDI A. On Darcy-Forchheimer flow of viscoelastic nanofluids: A comparative study [J]. J Mol Liq, 2017, 233, 278–287. DOI: https://doi.org/10.1016/j.molliq.2017.03.035.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. K. Nayak.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nayak, M.K., Mehmood, R., Makinde, O.D. et al. Magnetohydrodynamic flow and heat transfer impact on ZnO-SAE50 nanolubricant flow over an inclined rotating disk. J. Cent. South Univ. 26, 1146–1160 (2019). https://doi.org/10.1007/s11771-019-4077-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-019-4077-8

Key words

关键词

Navigation