Skip to main content
Log in

Three-dimensional analysis of natural convection in nanofluid-filled parallelogrammic enclosure opened from top and heated with square heater

纳米流体在顶部开孔底部加热的四方形容器内的三维自然对流

  • Article
  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

A numerical study based on the finite volume method has been performed to study the three-dimension natural convection in a parallelogrammic top side opened cavity filled nanofluid with partially heated square at the bottom side. Results are obtained for different governing parameters such as nanoparticle concentration (φ) from 0 to 0.05, inclination angle of the back and front walls (α) from 5° to 75°, Rayleigh number from 103 to 105, and length of heater changer from 0.1 to 1. The main finding from the obtained result showed that the inclination angle and nanoparticle volume fraction affect the flow structure and enhance the heat transfer.

摘要

构建纳米流体在顶部开孔底部加热的四方形容器流动模型, 基于有限体积法, 进行了纳米流体三维自然对流的数值研究。得到的控制参数为纳米粒子浓度(φ)0~0.05、前后壁倾角(α)5°~75°、Rayleigh数103~105、加热器的换热器长度0.1~1。结果表明, 倾角和纳米颗粒的体积分数影响流动结构, 提高了传热效果。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. YUNCU H, YAMAC S. Laminar natural convective heat transfer in an air-filled parallelogramic cavity [J]. International Communication in Heat and Mass Transfer, 1991, 18: 559–568. DOI: https://doi.org/10.1016/0735-1933(91)90069-0.

    Article  Google Scholar 

  2. ALDRIDGE K D, YAO H. Flow features of natural convection in a parallelogrammic enclosure [J]. International Communication in Heat and Mass Transfer, 2001, 28: 923–931. DOI: https://doi.org/10.1016/S0735-1933(01)00296-2.

    Article  Google Scholar 

  3. HUSSEIN A K, MUSTAFA A W. Natural convection in fully open parallelogrammic cavity filled with Cu-water nanofluid and heated locally from its bottom wall [J]. Thermal Science and Engineering Progress, 2017, 1: 66–77. DOI: https://doi.org/10.1016/j.tsep.2017.03.002.

    Article  Google Scholar 

  4. HUSSEIN A K. Computational analysis of natural convection in a parallelogrammic cavity with a hot concentric circular cylinder moving at different vertical locations [J]. International Communications in Heat and Mass Transfer, 2013, 46: 126–133. DOI: https://doi.org/10.1016/j.icheatmasstransfer.2013.05.008.

    Article  Google Scholar 

  5. JAGADEESHA R D, PRASANNA B M R, SANKAR M. Double diffusive convection in an inclined parallelogrammic porous enclosure [J]. Procedia Engineering, 2015, 127: 1346–1353. DOI: https://doi.org/10.1016/j.proeng.2015.11.493.

    Article  Google Scholar 

  6. BAIRI A. On the Nusselt number definition adapted to natural convection in parallelogrammic cavities [J]. Applied Thermal Engineering, 2008, 28: 1267–1271. DOI: https://doi.org/10.1016/j.applthermaleng.2007.10.025.

    Article  Google Scholar 

  7. COSTA V A F, OLIVEIRA M S A, SOUSA A C M. Laminar natural convection in a vertical stack of parallelogrammic partial enclosures with variable geometry [J]. International Journal of Heat and Mass Transfer, 2005, 48: 779–792. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2004.09.012.

    Article  MATH  Google Scholar 

  8. HAN H S, HYUN J M. Buoyant convection in a parallelogrammic enclosure filled with a porous medium-General analysis and numerical simulations [J]. International Journal of Heat and Mass Transfer, 2008, 51: 2980–2989. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2007.09.015.

    Article  MATH  Google Scholar 

  9. de MARIA G J M, BAÏRI A, COSTA V A F. Empirical correlations at high Ra for steady-state free convection in 2D air-filled parallelogrammic enclosures with isothermal discrete heat sources [J]. International Journal of Heat and Mass Transfer, 2010, 53: 3831–3838. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2010.04.036.

    Article  Google Scholar 

  10. VILLENEUVE T, BOUDREAU M, DUMAS G The thermal diode and insulating potentials of a vertical stack of parallelogrammic air-filled enclosures [J]. International Journal of Heat and Mass Transfer, 2017, 108: 2060–2071. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2016.12.067.

    Article  Google Scholar 

  11. MAHMOODI M, KANDELOUSI S. Kerosene-alumina nanofluid flow and heat transfer for cooling application [J]. Journal of Central South University, 2016, 23(4): 983–990. DOI: https://doi.org/10.1007/s11771-016-3146-5.

    Article  Google Scholar 

  12. SARI M R, KEZZAR M, ADJABI R. Heat transfer of copper/water nanofluid flow through converging-diverging channel [J]. Journal of Central South University, 2016, 23(2): 484–496. DOI: https://doi.org/10.1007/sll771-016-3094-0.

    Article  Google Scholar 

  13. MAJID S, MOHAMMAD J. Optimal selection of annulus radius ratio to enhance heat transfer with minimum entropy generation in developing laminar forced convection of water-Al2O3 nanofluid flow [J]. Journal of Central South University, 2017, 24(8): 1850–1865. DOI: https://doi.org/10.1007/s11771-017-3593-7.

    Article  Google Scholar 

  14. WUSIMAN K, CHUNG H, NINE MD J, HANDRY A, EOM Y, KIM J, JEONG H. Heat transfer characteristics of nanofluid through circular tube [J]. Journal of Central South University, 2013, 20(1): 142–148. DOI: https://doi.org/10.1007/sll771-013-1469-z.

    Article  Google Scholar 

  15. MOHEBBI R, LAKZAYI H, SIDIK N A C, JAPAR W M A A. Lattice boltzmann method based study of the heat transfer augmentation associated with Cu/water nanofluid in a channel with surface mounted blocks [J]. International Journal of Heat and Mass Transfer, 2018, 117: 425–435. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2017.10.043.

    Article  Google Scholar 

  16. MOHEBBI R, IZADI M, CHAMKHA A J. Heat source location and natural convection in a C-shaped enclosure saturated by a nanofluid [J]. Physics of Fluids, 2017, 29: 122009. DOI: https://doi.org/10.1063/1.4993866.

  17. IZADI M, HOGHOUGHI G, MOHEBBI R, SHEREMET M. Nanoparticle migration and natural convection heat transfer of Cu-water nanofluid inside a porous undulant-wall enclosure using LTNE and two-phase model [J]. Journal of Molecular Liquids, 2018, 261: 357–372. DOI: https://doi.org/10.1016/j.molliq.2018.04.063.

    Article  Google Scholar 

  18. KASAEIPOOR A, MALEKSHAH E H, KOLSI L. Free convection heat transfer and entropy generation analysis of MWCNT-MgO (15%–85%)/water nanofluid using lattice Boltzmann method in cavity with refrigerant solid body—Experimental thermo-physical properties [J]. Powder Technology, 2017, 322: 9–23. DOI: https://doi.org/10.1016/j.powtec.2017.08.061.

    Article  Google Scholar 

  19. EMAMI R Y, SIAVASHI M, MOGHADDAM G S. The effect of inclination angle and hot wall configuration on Cu-water nanofluid natural convection inside a porous square cavity [J]. Advanced Powder Technology, 2018, 29(3): 519–536. DOI: https://doi.org/10.1016/j.apt.2017.10.027.

    Article  Google Scholar 

  20. TOOSI M H, SIAVASHI M. Two-phase mixture numerical simulation of natural convection of nanofluid flow in a cavity partially filled with porous media to enhance heat transfer [J]. Journal of Molecular Liquids, 2017, 238: 553–569. DOI: https://doi.org/10.1016/j.molliq.2017.05.015.

    Article  Google Scholar 

  21. GHASEMI K, SIAVASHI M. Lattice Boltzmann numerical simulation and entropy generation analysis of natural convection of nanofluid in a porous cavity with different linear temperature distributions on side walls [J]. Journal of Molecular Liquids, 2017, 233: 415–430. DOI: https://doi.org/10.1016/j.molliq.2017.03.016.

    Article  Google Scholar 

  22. KOLSI L, KALIDASAN K, ALGHAMDI A, BORJINI M N, KANNA P R. Natural convection and entropy generation on a cubical cavity with twin adiabatic blocks and filled by aluminium oxide-water nanofluid [J]. Numerical Heat Transfer Part A, 2016, 70(3): 242–259. DOI: https://doi.org/10.1080/10407782.2016.1173478.

    Article  Google Scholar 

  23. CHANDRASEKAR M, SURESH S, CHANDRA BOSE A. Experimental investigations and theoretical determination of thermal conductivity and viscosity of Al2O3/water nanofluid [J]. Experimental Thermal and Fluid Science, 2010, 34: 210–216. DOI: https://doi.org/10.1016/j.expthermflusci.2009.10.022.

    Article  Google Scholar 

  24. ABIDI A, KOLSI L, BORJINI M N, BEN AÏSSIA H. Effect of radiative heat transfer on three-dimensional double diffusive natural convection [J]. Numerical Heat Transfer Part A, 2011, 60(9): 785–809. DOI: https://doi.org/10.1080/10407782.2011.627797.

    Article  Google Scholar 

  25. KOLSI L, ABIDI A, BORJINI M N, BEN AÏSSIA H. The effect of an external magnetic field on the entropy generation in three-dimensional natural convection [J]. Thermal Science, 2010, 14(2): 341–352. DOI: https://doi.org/10.1080/10407790601184462.

    Article  Google Scholar 

  26. FUSEGI T, HYUN J M, KUWAHARA K, FAROUK B. A numerical study of three-dimensional natural convection in a differentially heated cubical enclosure [J]. International Journal of Heat and Mass Transfer, 1991, 34: 1543–1557. DOI: https://doi.org/10.1016/0017-9310(91)90295-P

    Article  Google Scholar 

  27. NONI A D, GARCIA D E, HOTZA D. A modified model for the viscosity of ceramic suspensions [J]. Ceramics International, 2002, 28: 731–735. DOI: https://doi.org/10.1016/S0272-8842(02)00035-4.

    Article  Google Scholar 

  28. PATANKAR S V Numerical heat transfer and fluid flow [M]. Philadelphia, USA: Taylor & Francis, 1981.

    Google Scholar 

  29. WAKASHIMA S, SAITOH T S. Benchmark solutions for natural convection in a cubic cavity using the high-order time-space method [J]. International Journal of Heat and Mass Transfer, 2004, 47: 853–864. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2003.08.008.

    Article  MATH  Google Scholar 

  30. ÖZTOP H F, ABU-NADA E. Numerical study of natural convection in partially heated rectangular enclosures filled with nanofluids [J]. International Journal of Heat and Fluid Flow, 2008, 29(5): 1326–1336. DOI: https://doi.org/10.1016/j.ijheatfluidflow.2008.04.009.

    Article  Google Scholar 

  31. JAHANSHAHI M, HOSSEINIZADEH S F, ALIPANAH M, DEHGHANI A, VAKILINEJAD G R. Numerical simulation of free convection based on experimental measured conductivity in a square cavity using water/SiO2 nanofluid [J]. International Communications in Heat and Mass Transfer, 2010, 37: 687–694. DOI: https://doi.org/10.1016/j.icheatmasstransfer.2010.03.010.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lioua Kolsi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Rashed, A.A.A.A., Hassen, W., Kolsi, L. et al. Three-dimensional analysis of natural convection in nanofluid-filled parallelogrammic enclosure opened from top and heated with square heater. J. Cent. South Univ. 26, 1077–1088 (2019). https://doi.org/10.1007/s11771-019-4072-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-019-4072-0

Key words

关键`词

Navigation