Skip to main content
Log in

Regional-scale investigation of salt ions distribution characteristics in bauxite residue: A case study in a disposal area

赤泥堆场盐分分布及其盐碱土特性

  • Article
  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Revegetation on bauxite residue disposal areas is the most promising strategy to reduce its potential ecological risk during stacking or disposing. Migration of salt ions in bauxite residue is one of the major issues to stimulate soil formation to support plant growth. 21 residue samples were collected and the related parameters including exchangeable cations, soluble ions, total salt, pH, electrical conductivity (EC) and exchangeable sodium percentage (ESP) were selected to evaluate alkalization and salinization of bauxite residue. High levels of ions, cation exchange capacity (TOC), total salt, exchangeable sodium percentage (ESP) and cation exchange capacity (CEC) in bauxite residue were detected with greater coefficient of variation (CV), which indicated that distribution characteristics of salt ions varied significantly. The percentage of sulfate-chloride-soda type in the residues accounted for 71.43%. The mean value of pH was 10.10, whilst mean value of ESP was 52.05%. It indicated that the residues in this case study belonged to sulfate-chloride-soda saline and alkaline soil. The research results could provide theoretical basis for soil formation in bauxite residue.

摘要

盐分迁移转化是赤泥土壤化处置的主要影响因素之一。通过对堆场赤泥盐碱参数的测定,分析 堆场赤泥盐分分布及其盐碱土特性。结果表明:赤泥总盐含量、主要盐分离子含量、交换性钠离子比、 阳离子交换量的变异系数较大,赤泥堆场盐分分布具有显著性差异;赤泥总盐含量均值为9.61 g/kg, 具有盐土类型特征,且以硫酸盐-氯化物-苏打型为主,占比达到71.43%;赤泥pH 均值为10.10,可交 换钠离子比均值为52.05%,具有碱土类型特征。研究结果为赤泥盐碱调控及土壤化处置提供了理论 依据。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. JONES B E H, HAYNES R J. Bauxite processing residue: A critical review of its formation, properties, storage, and revegetation [J]. Critical Reviews in Environmental Science & Technology, 2011, 41(3): 271–315. DOI: 10.1080/10643380902800000.

    Article  Google Scholar 

  2. XUE Sheng-guo, KONG Xiang-feng, ZHU Feng, HARTLEY W, LI Xiao-fei, LI Yi-wei. Proposal for management and alkalinity transformation of bauxite residue in China [J]. Environmental Science & Pollution Research, 2016, 23(13): 12822–12834. DOI: 10.1007/s11356-016-6478–7.

    Article  Google Scholar 

  3. ZHU Feng, LIAO Jia-xin, XUE Sheng-guo, HARTLEY W, ZOU Qi, WU Hao. Evaluation of aggregate microstructures following natural regeneration in bauxite residue as characterized by synchrotron-based X-ray micro-computed tomography [J]. Science of the Total Environment, 2016, 573(24): 155–163. DOI: 10.1016/j.scitotenv.2016.08.108.

    Article  Google Scholar 

  4. GRAFE M, POWER G, KLAUBER C. Bauxite residue issues: III. Alkalinity and associated chemistry [J]. Hydrometallurgy, 2011, 108(1, 2): 60–79. DOI: 10.1016/j.hydromet.2011.02.004.

    Google Scholar 

  5. LIU Wan, CHEN Xiang, LI Wang, YU Yan, YAN Kun. Environmental assessment, management and utilization of red mud in China [J]. Journal of Cleaner Production, 2014, 84: 606–610. DOI: 10.1016/j.jclepro.2014.06.080.

    Article  Google Scholar 

  6. KONG Xiang-feng, GUO Ying, XUE Sheng-guo, HARTLEY W, WU Chuan, YE Yu, CHENG Qin. Natural evolution of alkaline characteristics in bauxite residue [J]. Journal of Cleaner Production, 2017, 143: 224–230. DOI: 10.1016/j.jclepro.2016.12.125.

    Article  Google Scholar 

  7. GELENCSER A, KOVATS N, TUROCZI B, ROSTASI, HOFFER A, IMRE K, NYIRO K I, CSAKBERENYI M D, TOTH, CZITROVSZKY A. The Red Mud Accident in Ajka (Hungary): Characterization and potential health effects of fugitive dust [J]. Environmental Science & Technology, 2011, 45(4): 1608–1615. DOI: 10.1021/es104005r.

    Article  Google Scholar 

  8. ZHU Feng, XUE Sheng-guo, HARTLEY W, HUANG Ling, WU Chuan, LI Xiao-bin. Novel predictors of soil genesis following natural weathering processes of bauxite residues [J]. Environmental Science & Pollution Research, 2016, 23(3): 2856–2863. DOI: 10.1007/s11356-015-5537-9.

    Article  Google Scholar 

  9. SANTINI T C, BANNING N C. Alkaline tailings as novel soil forming substrates: Reframing perspectives on mining and refining wastes [J]. Hydrometallurgy, 2016, 164: 38–47. DOI: 10.1016/j.hydromet.2016.04.011.

    Article  Google Scholar 

  10. KONG Xiang-Feng, TIAN Tao, XUE Sheng-guo, HARTLEY W, HUANG Long, WU Chuan, LI Chu. Development of alkaline electrochemical characteristics demonstrates soil formation in bauxite residue undergoing natural rehabilitation [J]. Land Degradation and Development, 2018, 29(1): 58–67. DOI: 10.1002/ldr.2836.

    Article  Google Scholar 

  11. ZHU Feng, LI Xiao-fei, XUE Sheng-guo, HARTLEY W, WU Chuan, HAN Fu. Natural plant colonization improves the physical condition of bauxite residue over time [J]. Environmental Science and Pollution Research, 2016, 23(22): 22897–22905. DOI: 10.1007/s11356-016-7508-1.

    Article  Google Scholar 

  12. ZHU Feng, CHENG Qing, XUE Sheng-guo, LI Chu-xuan, HARTLEY W, WU Chuan, TIAN Tao. Influence of natural regeneration on fractal features of residue microaggregates in bauxite residue disposal areas [J]. Land Degradation & Development, 2018, 29(1): 138–149. DOI: 10.1002/ldr.2848.

    Article  Google Scholar 

  13. BANNING N C, SAWADA Y, PHILLIPS I R, MURPHY D V. Amendment of bauxite residue sand can alleviate constraints to plant establishment and nutrient cycling capacity in a water-limited environment [J]. Ecological Engineering, 2014, 62(1): 179–187. DOI: 10.1016/j.ecoleng.2013.10.034.

    Article  Google Scholar 

  14. XEU Sheng, YE Yu, ZHU Feng, WANG Qiong, JIANG Jun, HARTLEY W. Changes in distribution and microstructure of bauxite residue aggregates following amendments addition [J]. Journal of Environmental Sciences, 2019, 78: 276–286. DOI: 10.1016/j.jes.2018.10.010.

    Article  Google Scholar 

  15. ANDREW W B, DOUGLAS I S, RONAN C, SIMON P R, PAUL N H, WILLIAM M M, IAN T B. Sustained bauxite residue rehabilitation with gypsum and organic matter 16 years after initial treatment [J]. Environmental Science & Technology, 2018, 52(1): 152–161. DOI: 10.1021/acs.est. 7b03568.

    Article  Google Scholar 

  16. ZHU Feng, HOU Jing, XEU Sheng, WU Chuan, WANG Qiong, HARTLEY W. Vermicompost and gypsum amendments improve aggregate formation in bauxite residue [J]. Land Degradation & Development, 2017, 28(7): 2109–2120. DOI: 10.1002/ldr.2737.

    Article  Google Scholar 

  17. ZHAO Jin, CHEN Shan, HU Rong, LI Ya. Aggregate stability and size distribution of red soils under different land uses integrally regulated by soil organic matter, and iron and aluminum oxides [J]. Soil & Tillage Research, 2017, 167: 73–79. DOI: 10.1016/j.still.2016.11.007.

    Article  Google Scholar 

  18. SHI P, ARTER C, LIU Xing, KELLER M, SCHULIN R. Soil aggregate stability and size-selective sediment transport with surface runoff as affected by organic residue amendment [J]. Science of the Total Environment, 2017, 607–608: 95. DOI: 10.1016/j.scitotenv.2017.07.008.

    Google Scholar 

  19. WU Xin, CAI Chong, WANG Jun. Spatial variations of aggregate stability in relation to sesquioxides for zonal soils, South-central China [J]. Soil & Tillage Research, 2016, 157: 11–22. DOI: 10.1016/j.still.2015. 11.005.

    Article  Google Scholar 

  20. XUE Sheng-guo, WU Yu, LI Yi-wei, KONG Xiang-feng, ZHU Feng, HARTLEY W, LI Xiao-bin. Industrial wastes applications for alkalinity regulation in bauxite residue: A comprehensive review [J]. Journal of Central South University, 2019, 26(2): 268–288.

    Article  Google Scholar 

  21. LEVY J G, TORRENTO R J. Clay dispersion and macroaggregate stability as affected by exchangeable potassium and sodium [J]. Soil science, 1995, 160(5): 352–358. DOI: 10.1097/00010694-199511000-00004.

    Article  Google Scholar 

  22. XUE Sheng-guo, LI Meng, JIANG Jun, MILLAR G J, LI Chu-xuan, KONG Xiang. Phosphogypsum stabilization of bauxite residue: Conversion of its alkaline characteristics [J]. Journal of Environmental Sciences, 2019, 77: 1–10. DOI: 10.1016/j.jes.2018.05.016.

    Article  Google Scholar 

  23. LI Yi-wei, JIANG Jun, XUE Sheng-guo, MILLAR G, KONG, Xiang-feng, LI Xiao-fei, LI Meng, LI Chu. Effect of ammonium chloride on leaching behavior of alkaline anion and sodium ion in bauxite residue [J]. Transactions of Nonferrous Metals Society of China, 2018, 28(10): 2125–2134. DOI: 10.1016/S1003-6326(18)64857-5.

    Article  Google Scholar 

  24. JONES B E H, HAYNES R J, PHILLIPS I R. Influence of organic waste and residue mud additions on chemical, physical and microbial properties of bauxite residue sand [J]. Environmental Science and Pollution Research, 2011, 18(2): 199–211. DOI: 10.1007/s11356-010-0364-5.

    Article  Google Scholar 

  25. MARTIN A M, FORTE G, OSTAP S, SEE J. The mineralogy of bauxite for producing smelter-grade alumina [J]. Mineralogy Overview, 2001, 12(1253): 36–40. DOI: 10.1007/s11837-001-0011-1.

    Google Scholar 

  26. KILIC K, KILIC S. Spatial variability of salinity and alkalinity of a field having salination risk in semi-arid climate in northern Turkey [J]. Environmental Monitoring and Assessment, 2007, 127(1–3): 55–65. DOI: 10.1007/s10661-006-9258-x.

    Article  Google Scholar 

  27. REEVES D W. The role of soil organic matter in maintaining soil quality in continuous cropping systems [J]. Soil & Tillage Research, 1997, 43(1): 131–167. DOI: 10.1016/s0167-1987(97)00038-x.

    Article  Google Scholar 

  28. PAL D K, BHATTACHARYYA T, RAY S K, CHANDRAN P, SRIVASTAVA P, DURGE S L, BHUSE S R. Significance of soil modifiers (Ca-zeolites and gypsum) in naturally degraded Vertisols of the Peninsular India in redefining the sodic soils [J]. Geoderma, 2006, 136(1, 2): 210–228. DOI: 10.1016/j.geoderma.2006.03.020.

    Article  Google Scholar 

  29. MEI J P, CHEN L. Fuzzy clustering with weighted medoids for relational data [J]. Pattern Recognition, 2010, 43(5): 1964–1974. DOI: 10.1016/j.patcog.2009.12.00.

    Article  MATH  Google Scholar 

  30. LU Ru. Soil agrochemical analysis methods [M]. Nanjing: China Agricultural Science and Technology Press, 1999. (in Chinese)

    Google Scholar 

  31. MOR R P, MANCHANDA H R. Influence of phosphorus on the tolerance of table pea to chloride and sulfate salinity in a sandy soil [J]. Arid Soil Research and Rehabilitation, 1992, 6: 41–52. DOI: 10.1080/15324989209381295.

    Article  Google Scholar 

  32. GUPTA R K, ABROL I P. Salt affected soils: Their reclamation and management for crop production [J]. Advances in Soil Science, 1990, 11: 224–288. DOI: 10.1007/978–1-4612-3322-0-7.

    Google Scholar 

  33. LI Shu-gang, YU Qi-li, WANG Zhou-qiong. Investigation on hydrolytic alkalinity of desert alkaline soil [J]. Acta Pedologica Sinica, 1982, 19(3): 311–314. (in Chinese)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Zhu  (朱锋).

Additional information

Foundation item: Project(41701587) supported by the National Natural Science Foundation of China; Project(PM-zx703-201803-057) supported by Basic Scientific Research Business of Central Institutes of Environmental Protection, China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xue, Sg., Wang, Ql., Tian, T. et al. Regional-scale investigation of salt ions distribution characteristics in bauxite residue: A case study in a disposal area. J. Cent. South Univ. 26, 422–429 (2019). https://doi.org/10.1007/s11771-019-4014-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-019-4014-x

关键词

Key words

Navigation