Skip to main content
Log in

Adaptive neural network based sliding mode altitude control for a quadrotor UAV

基于自适应神经网络的四转子无人机滑模高度控制

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Reasons and realities such as being non-linear of dynamical equations, being lightweight and unstable nature of quadrotor, along with internal and external disturbances and parametric uncertainties, have caused that the controller design for these quadrotors is considered the challenging issue of the day. In this work, an adaptive sliding mode controller based on neural network is proposed to control the altitude of a quadrotor. The error and error derivative of the altitude of a quadrotor are the inputs of neural network and altitude sliding surface variable is its output. Neural network estimates the sliding surface variable adaptively according to the conditions of quadrotor and sets the altitude of a quadrotor equal to the desired value. The proposed controller stability has been proven by Lyapunov theory and it is shown that all system states reach to sliding surface and are remaining in it. The superiority of the proposed control method has been proven by comparison and simulation results.

摘要

由于动力学方程的非线性、四转子的轻量化和不稳定性等原因和现实情况, 加上内、外扰动和 参数不确定性等因素, 使得四转子控制器的设计成为当今研究的热点。本文提出一种基于神经网络的 自适应滑模控制器来控制四转子的高度。四转子高度的误差和误差导数是神经网络的输入, 高度滑动 面变量是输出。神经网络根据四转子的条件自适应地估计滑动面变量, 并将四转子的高度设为期望值。 用李雅普诺夫理论证明了该控制器的稳定性, 证明了系统的所有状态都达到了滑动面, 并保持在滑动 面内。通过对比和仿真, 验证了所提出的控制方法的优点。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. ZHU X, ZHANG X X, QU Y H. Three-dimensional formation keeping of multi-UAV based on consensus [J]. Journal of Central South University, 2017, 24(6): 1387–1395.

    Article  Google Scholar 

  2. WANG B, HOU Z X, LU Y F, ZHU X F. Hover performance estimation and validation of battery powered vertical takeoff and landing aircraft [J]. Journal of Central South University, 2016, 23(10): 2595–2603.

    Article  Google Scholar 

  3. LIN C, XIAO J, LI D, WENG Q. Radon transform-based indoor localization control for quadrotor [J]. Optik-International Journal for Light and Electron Optics, 2016, 127(19): 8056–8064.

    Article  Google Scholar 

  4. CHEN Y M, HE Y L, ZHOU M F. Decentralized PID neural network control for a quadrotor helicopter subjected to wind disturbance [J]. Journal of Central South University, 2015, 22(1): 168–179.

    Article  Google Scholar 

  5. SONG Y, XIAN B, ZHANG Y, JIANG X, ZHANG X. Towards autonomous control of quadrotor unmanned aerial vehicles in a GPS-denied urban area via laser ranger finder [J]. Optik-International Journal for Light and Electron Optics, 2015, 126(23): 3877–3882.

    Article  Google Scholar 

  6. MIRZAEI M, EGHTESAD M, ALISHAHI M M. A new robust fuzzy method for unmanned flying vehicle control [J]. Journal of Central South University, 2015, 22(6): 2166–2182.

    Article  Google Scholar 

  7. ROZA A, MAGGIORE M. A class of position controllers for underactuated VTOL vehicles [J]. IEEE Transactions on Automatic Control, 2014, 59(9): 2580–2585.

    Article  MathSciNet  MATH  Google Scholar 

  8. LI S, WANG Y, TAN J, ZHENG Y. Adaptive RBFNNs/integral sliding mode control for a quadrotor aircraft [J]. Neurocomputing, 2016, 216: 126–134.

    Article  Google Scholar 

  9. PÉREZ-ALCOCER R, MORENO-VALENZUELA J, MIRANDA-COLORADO R. A robust approach for trajectory tracking control of a quadrotor with experimental validation [J]. ISA Transactions, 2016, 65: 262–274.

    Article  Google Scholar 

  10. JABBARI ASL H, YOON J. Adaptive vision-based control of an unmanned aerial vehicle without linear velocity measurements [J]. ISA Transactions, 2016, 65: 296–306.

    Article  Google Scholar 

  11. CHANG K, XIA Y, HUANG K, MA D. Obstacle avoidance and active disturbance rejection control for a quadrotor [J]. Neurocomputing, 2016, 190: 60–69.

    Article  Google Scholar 

  12. SALAZAR-CRUZ S, KENDOUL F, LOZANO R, FANTONI I. Real-time stabilization of a small three-rotor aircraft [J]. IEEE Transactions on Aerospace and Electronic Systems, 2008, 44(2): 783–794.

    Article  Google Scholar 

  13. ZULU A, JOHN S. A review of control algorithms for autonomous quadrotors [J]. Open Journal of Applied Sciences, 2014, 4: 547–556.

    Article  Google Scholar 

  14. CHEN F, JIANG R, ZHANG K, JIANG B, TAO G. Robust backstepping sliding mode control and observer-based fault estimation for a quadrotor UAV [J]. IEEE Transactions on Industrial Electronics, 2016, 63(8): 5044–5056.

    Article  Google Scholar 

  15. GONZÁLEZ I, SALAZAR S, LOZANO R. Chattering-free sliding mode altitude control for a quad-rotor aircraft: Real-time application [J]. Journal of Intelligent & Robotic Systems, 2014, 73(1): 137–155.

    Article  Google Scholar 

  16. RAMIREZ-RODRIGUEZ H, PARRA-VEGA V, SANCHEZ-ORTA A, GARCIA-SALAZAR O. Robust backstepping control based on integral sliding modes for tracking of quadrotors [J]. Journal of Intelligent & Robotic Systems, 2014, 73(1): 51–66.

    Article  Google Scholar 

  17. XIONG J J, ZHANG G B. Global fast dynamic terminal sliding mode control for a quadrotor UAV [J]. ISA Transactions, 2016, 66: 233–240.

    Article  Google Scholar 

  18. ZHENG E H, XIONG J J, LUO J L. Second order sliding mode control for a quadrotor UAV [J]. ISA Transactions, 2014, 53(4): 1350–1356.

    Article  Google Scholar 

  19. YANG Y, YAN Y. Attitude regulation for unmanned quadrotors using adaptive fuzzy gain-scheduling sliding mode control [J]. Aerospace Science and Technology, 2016, 54: 208–217.

    Article  Google Scholar 

  20. XIONG J J, ZHENG E H. Position and attitude tracking control for a quadrotor UAV [J]. ISA Transactions, 2014, 53(3): 725–731.

    Article  MathSciNet  Google Scholar 

  21. XIONG J J, ZHANG G. Discrete-time sliding mode control for a quadrotor UAV [J]. Optik-International Journal for Light and Electron Optics, 2016, 127(8): 3718–3722.

    Article  Google Scholar 

  22. ZEGHLACHE S, KARA K, SAIGAA D. Fault tolerant control based on interval type-2 fuzzy sliding mode controller for coaxial trirotor aircraft [J]. ISA Transactions, 2015, 59: 215–231.

    Article  Google Scholar 

  23. ZEGHLACHE S, SAIGAA D, KARA K. Fault tolerant control based on neural network interval type-2 fuzzy sliding mode controller for octorotor UAV [J]. Frontiers of Computer Science, 2016, 10(4): 657–672.

    Article  Google Scholar 

  24. ZHENG E, XIONG J. Quad-rotor unmanned helicopter control via novel robust terminal sliding mode controller and under-actuated system sliding mode controller [J]. Optik-International Journal for Light and Electron Optics, 2014, 125(12): 2817–2825.

    Article  Google Scholar 

  25. XIONG J J, ZHENG E H. Optimal Kalman filter for state estimation of a quadrotor UAV [J]. Optik-International Journal for Light and Electron Optics, 2015, 126(21): 2862–2868.

    Article  Google Scholar 

  26. YE J. Adaptive control of nonlinear PID-based analog neural networks for a nonholonomic mobile robot [J]. Neurocomputing, 2008, 71(7): 1561–1565.

    Article  Google Scholar 

  27. WU B, HAN S, XIAO J, HU X, FAN J. Error compensation based on BP neural network for airborne laser ranging [J]. Optik-International Journal for Light and Electron Optics, 2016, 127(8): 4083–4088.

    Article  Google Scholar 

Download references

Acknowledgements

The author is thankful to authorities of East Tehran Branch, Islamic Azad University, Tehran, Iran, for providing support and necessary facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hadi Razmi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Razmi, H. Adaptive neural network based sliding mode altitude control for a quadrotor UAV. J. Cent. South Univ. 25, 2654–2663 (2018). https://doi.org/10.1007/s11771-018-3943-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-018-3943-0

Key words

关键词

Navigation