Skip to main content

Sliding Mode Control with Tanh Function for Quadrotor UAV Altitude and Attitude Stabilization

  • Conference paper
  • First Online:
Intelligent Manufacturing and Mechatronics

Abstract

This paper addresses the problem of robust altitude (z), and attitude (ϕ, θ, ψ) control of ‘ ×’ mode configuration quadrotor UAV using a sliding mode control (SMC) with tanh function. The dynamic quadrotor model is derived by considering the nonlinearity factor. The dynamic model is simulated in MATLAB Simulink without and with the presence of external disturbance to test the robustness of the control method. A comparison is made with three others sliding mode control laws, such as reaching law, exponential reaching law and saturation function. The sliding condition is verified and guaranteed by the Lyapunov stability function. The result confirms that the sliding mode control using the tanh function shows tremendous performance and robustness against disturbance without being affected by the chattering phenomenon. This study deals with the nonlinear quadrotor control for attitude and altitude control using robust sliding mode control, where the tanh function eliminates the chattering phenomenon.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ajmera J, Sankaranarayanan V (2016) Point-to-point control of a quadrotor: theory and experiment. In: IFAC-international federation of automatic control, pp 401–406

    Google Scholar 

  2. Bazin J, Fields T, Smith AJ (2016) Feasibility of in-flight quadrotor individual motor thrust measurements. In: AIAA atmospheric flight mechanics conference, pp 1–12

    Google Scholar 

  3. Deepak BBVL, Singh P (2016) A survey on design and development of an unmanned aerial vehicle (quadcopter). Int J Intell Unmanned Syst 4:70–106

    Article  Google Scholar 

  4. Števek J, Fikar M (2016) Teaching aids for laboratory experiments with AR.Drone2 quadrotor. IFAC-PapersOnLine 49:236–241

    Article  Google Scholar 

  5. Gaitan AT, Bolea Y (2013) Modeling and robust attitude control of a quadrotor system. In: 10th international conference on electrical engineering, computing science and automatic control, pp 7–12

    Google Scholar 

  6. Bai Y, Liu H, Shi Z, Zhong Y (2012) Robust control of quadrotor unmanned air vehicles. In: Proceedings - 2012 31st Chinese control conference, pp 4462–4467

    Google Scholar 

  7. Liu H, Yu T, Yu Y (2016) Robust trajectory tracking control for quadrotors with uncertainties and delays. In: Proceedings 35th Chinese control conference, pp 2998–3001

    Google Scholar 

  8. Bouabdallah S, Murrieri P, Siegwart R et al (2004) Design and control of an indoor micro quadrotor. In: Proceedings 2004 IEEE international conference on robotics and automation, New Orleans, LA, April 2004, pp 4393–4398

    Google Scholar 

  9. Garc RA (2012) Robust PID control of the quadrotor helicopter. IFAC Conference on Advances in PID Control, PID 12 Brescia (Italy) 2:10–15

    Google Scholar 

  10. Zeng Y, Jiang Q, Liu Q, Jing H (2012) PID vs. MRAC control techniques applied to a Quadrotor’s attitude. In: Proceedings of the 2012 2nd international conference on instrumentation, measurement, computer, communication and control, IMCCC 2012

    Google Scholar 

  11. Ahmed N, Chen M (2018) Sliding mode control for quadrotor with disturbance observer. Adv Mech Eng 10:1–16

    Article  Google Scholar 

  12. Babaie R, Ehyaei AF (2017) Robust control design of a quadrotor UAV based on incremental hierarchical sliding mode approach. In: Iranian conference on electrical engineering, pp 835–840

    Google Scholar 

  13. Dey P (2016) Robust attitude control of quadrotor using sliding mode. In: International conference on automatic control and dynamic optimization techniques, pp 268–272

    Google Scholar 

  14. Jayakrishnan HJ (2016) Position and attitude control of a quadrotor UAV using super twisting sliding mode. IFAC-PapersOnLine 49:284–289

    Article  MathSciNet  Google Scholar 

  15. Runcharoon K, Srichatrapimuk V (2013) Sliding mode control of quadrotor. In: 2013 the international conference on technological advances in electrical, electronics and computer engineering, pp 552–557

    Google Scholar 

  16. Shaik MK, Whidborne JF (2016) Robust sliding mode control of a quadrotor. In: UKACC 11th international conference on control, pp 1–6

    Google Scholar 

  17. Xiong J-J, Zhang G (2016) Discrete-time sliding mode control for a quadrotor UAV. Opt - Int J Light Electron Opt 127:3718–3722

    Article  Google Scholar 

  18. Mercado D, Castillo P, Castro R, Lozano R (2014) 2-sliding mode trajectory tracking control and EKF estimation for quadrotors. IFAC Proc Vol (IFAC-PapersOnline) 47:8849–8854

    Article  Google Scholar 

  19. Ganzalez I, Salazar S, Lozano R, Escareno J (2013) Real-time altitude robust controller for a quad-rotor aircraft using sliding-mode control technique. In: International conference on unmanned aircraft systems, pp 650–659

    Google Scholar 

  20. Sudhir SA (2016) Second order sliding mode control for quadrotor. In: 2016 IEEE first international conference on control, measurement and instrumentation, pp 92–96

    Google Scholar 

  21. Sumantri B, Uchiyama N, Sano S (2016) Least square based sliding mode control for a quad-rotor helicopter and energy saving by chattering reduction. Mech Syst Signal Process 66–67:769–784

    Article  Google Scholar 

  22. Xiong J, Zhang G (2016) Sliding mode control for a quadrotor UAV with parameter uncertainties. In: 2nd international conference on control, automation and robotics, pp 207–212

    Google Scholar 

  23. Zheng E-H, Xiong J-J, Luo J-L (2014) Second order sliding mode control for a quadrotor UAV. ISA Trans 53:1–7

    Article  Google Scholar 

  24. Domingos D, Camargo G, Gomide F (2016) Autonomous fuzzy control and navigation of quadcopters. IFAC-PapersOnLine 49:73–78

    Article  Google Scholar 

  25. Ghommam J, Luque-Vega LF, Castillo-Toledo B, Saad M (2016) Three-dimensional distributed tracking control for multiple quadrotor helicopters. J Franklin Inst 353:2344–2372

    Article  MathSciNet  Google Scholar 

  26. Basri MAM, Husain AR, Danapalasingam KA (2014) Enhanced backstepping controller design with application to autonomous quadrotor unmanned aerial vehicle. J Intell Robot Syst Theory Appl 79:295–321

    Article  Google Scholar 

  27. Noordin A, Basri MAM, Mohamed Z, Abidin AFZ (2017) Modelling and PSO fine-tuned PID control of quadrotor UAV. Int J Adv Sci Eng Inf Technol 7(4):1367–1373

    Google Scholar 

  28. Jinkun L (2017) Sliding mode control using MATLAB. Academic Press, Elsevier

    Google Scholar 

  29. Aghababa MP, Akbari ME (2012) A chattering-free robust adaptive sliding mode controller for synchronization of two different chaotic systems with unknown uncertainties and external disturbances. Appl Math Comput 218:5757–5768

    MathSciNet  MATH  Google Scholar 

  30. Ioannou PA, Sun J (1996) Robust Adaptive Control. Prentice-Hall, Hoboken

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank Universiti Teknologi Malaysia (UTM) under the Research University Grant (R.J130000.2651.17J42), Universiti Teknikal Malaysia Melaka (UTeM), and Ministry of Education Malaysia for supporting this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohd Ariffanan Mohd Basri .

Editor information

Editors and Affiliations

Appendix

Appendix

Lemma 1.1: [28, 29] For every given scalar \(x\) and positive scalar \( \epsilon\), the following inequality holds:

$$ \begin{array}{*{20}c} {x.tanh\left( {\frac{x}{\epsilon}} \right) = \left| {x.tanh\left( {\frac{x}{\epsilon}} \right)} \right| = \left| x \right|\left| {\tanh \left( {\frac{x}{\epsilon}} \right)} \right| \ge 0} \\ \end{array} $$

Lemma 1.1 can be proved as follows: according to the definition of tanh function, we have

$$ \begin{array}{*{20}c} {x.\tanh \left( {\frac{x}{\epsilon}} \right) = s\frac{{e^{{\frac{x}{\epsilon}}} - e^{{ - \frac{x}{\epsilon}}} }}{{e^{{\frac{x}{\epsilon}}} + e^{{ - \frac{x}{\epsilon}}} }}{ } = \frac{1}{{e^{{2\frac{x}{\epsilon}}} + 1}}x\left( {e^{{2\frac{x}{\epsilon}}} - 1} \right)} \\ \end{array} $$

Since

\( e^{{2\frac{x}{\epsilon}}} - 1 \ge 0{ }\,\,\,if{ }x \ge 0\)

\( e^{{2\frac{x}{\epsilon}}} - 1 < 0{ }\,\,\,if{ }x < 0\)

Then

$$ x\left( {e^{{2\frac{x}{\epsilon}}} - 1} \right) \ge 0 $$

Therefore

$$ x.\tanh \left( {\frac{x}{\epsilon}} \right) = \frac{1}{{e^{{2\frac{x}{\epsilon}}} + 1}}x\left( {e^{{2\frac{x}{\epsilon}}} - 1} \right) \ge 0 $$

And

$$ x.\tanh \left( {\frac{x}{\epsilon}} \right) = \left| {x.tanh\left( {\frac{x}{\epsilon}} \right)} \right| = \left| x \right|\left| {\tanh \left( {\frac{x}{\epsilon}} \right)} \right| \ge 0 $$

Lemma 1.2, [28, 30] Let \(f\), \(V:\left[ {0,\infty } \right] \in R\), then \(\dot{V} \le - \alpha V + f\), \(\forall t \ge t_{0} \ge 0\) implies that

$$ V\left( t \right) \le e^{{ - \alpha \left( {t - t_{0} } \right)}} V\left( {t_{0} } \right) + \mathop \smallint \limits_{{t_{0} }}^{t} e^{{ - \alpha \left( {t - \tau } \right)}} f\left( \tau \right)d\tau { } $$

For any finite constant \(\alpha .\)

According to [28, 30], we have the proof as follows:

Let \(\omega \left( t \right) \triangleq \dot{V} + \alpha V - f\), we have \(\omega \left( t \right) \le 0\), and

$$ \dot{V} = - \alpha V + f + \omega $$

Implies that

$$ V\left( t \right) = e^{{ - \alpha \left( {t - t_{0} } \right)}} V\left( {t_{0} } \right) + \mathop \smallint \limits_{{t_{0} }}^{t} e^{{ - \alpha \left( {t - \tau } \right)}} f\left( \tau \right)d\tau + \mathop \smallint \limits_{{t_{0} }}^{t} e^{{ - \alpha \left( {t - \tau } \right)}} \omega \left( \tau \right)d\tau $$

Because \(\omega \left( t \right) < 0\) and \(\forall t \ge t_{o} \ge 0,\) we have

$$ V\left( t \right) = e^{{ - \alpha \left( {t - t_{0} } \right)}} V\left( {t_{0} } \right) + \mathop \smallint \limits_{{t_{0} }}^{t} e^{{ - \alpha \left( {t - \tau } \right)}} f\left( \tau \right)d\tau $$

Moreover, if we choose \(f = 0\), then we have \(\dot{V} \le - \alpha V\), implies that

$$ V\left( t \right) = e^{{ - \alpha \left( {t - t_{0} } \right)}} V\left( {t_{0} } \right) $$

If \(\alpha\) is a positive constant value, \(V\left( t \right)\) will tend to zero exponentially with \(\alpha\) value.

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Noordin, A., Basri, M.A.M., Mohamed, Z. (2021). Sliding Mode Control with Tanh Function for Quadrotor UAV Altitude and Attitude Stabilization. In: Bahari, M.S., Harun, A., Zainal Abidin, Z., Hamidon, R., Zakaria, S. (eds) Intelligent Manufacturing and Mechatronics. Lecture Notes in Mechanical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-16-0866-7_41

Download citation

Publish with us

Policies and ethics