Skip to main content
Log in

Dynamic model for internally carried air-launched rocket

内装式空中发射运载火箭的动力学模型

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

For rigid-flexible coupling multi-body with variable topology, such as the system of internally carried air-launched or heavy cargo airdrop, in order to construct a dynamic model with unified form, avoid redundancy in the modeling process and make the solution independent, a method based on the equivalent rigidization model was proposed. It divides a system into independent subsystems by cutting off the joints, of which types are changed with the operation process of the system. And models of different subsystems can be constructed via selecting suitable modeling methods. Subsystem models with flexible bodies are on the basis of the equivalent rigidization model which replaces the flexible bodies with the virtual rigid bodies. And the solution for sanction, which is based on the constraints force algorithm (CFA) and vector mechanics, can be independent on the state equations. The internally carried air-launched system was taken as an example for verifying validity and feasibility of the method and theory. The dynamic model of aircraft-rocket-parachute system in the entire phase was constructed. Comparing the modeling method with the others, the modeling process was programmed; and form of the model is unified and simple. The model, method and theory can be used to analyze other similar systems such as heavy cargo airdrop system and capsule parachute recovery system.

摘要

针对类似于内装式空中发射多体系统及重装空投系统的变拓扑结构刚-柔耦合多体系统, 为建 立形式统一的动力学模型, 并避免单一建模方法的冗余建模过程, 提出基于等效刚化的建模方法。在 建模过程中, 截断在系统工作过程中拓扑结构发生变化的铰。包含柔性体的子系统采用等效刚化的建 模方法, 其他子系统可根据需要选择合适的建模方法。在计算过程中, 根据约束力计算算法及矢量力 学理论可将约束力与状态方程独立求解。以内装式空中发射系统的动力学模型建立为例子, 验证了基 于等效刚化的建模方法的有效性和正确性, 并分阶段建立了空中发射系统的动力学模型。与其他建模 方法相比, 上述理论得到的动力学模型在不同阶段具有统一的形式, 建模过程简单且程序化。等效刚 化的建模方法及其相关理论可应用于类似的刚-柔耦合多体系统。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. KE Peng, YAN Chun, YANG Xue. Extraction phase simulation of cargo airdrop system [J]. Chinese Journal of Aeronautics, 2006, 19(4): 315–321. DOI: 10.1016/S1000-9361(11)60334-8.

    Article  Google Scholar 

  2. CHEN Jie, SHI Zhong. Aircraft modeling and simulation with cargo moving inside [J]. Chinese Journal of Aeronautics, 2009, 22(2): 191–197. DOI: 10.1016/S1000-9361(08)60086-2.

    Article  Google Scholar 

  3. YAN Chun, KE Peng. Development and validation of the multi-body simulation software for the heavy cargo airdrop system [C]//19th AIAA Aerodynamic Decelerator Systems Technology Conference and Seminar. Williamsburg, VA, AIAA 2007–2572. DOI: 10.2514/6.2007-2572.

    Google Scholar 

  4. DESABRAIS K J, RILEY J, SADECK J, LEE C. Low-cost high-altitude low-opening cargo airdrop systems [J]. Journal of Aircraft, 2012, 49(1): 349–354. DOI: 10.2514/1.C031527.

    Article  Google Scholar 

  5. CHEN Jie, MA Cun, DONG Song. Kinetic characteristics analysis of aircraft during heavy cargo airdrop [J]. International Journal of Automation and Computing, 2014, 11(3): 313–319. DOI: 10.1007/s11633-014-0794-5.

    Article  Google Scholar 

  6. LI Chun, TENG Hai, ZHU Yan, JIANG Wan, ZHOU Peng, HUANG Wei, CHEN Xu, LIU Jing. Design and simulation for large parafoil fix line object homing algorithm [J]. Journal of Central South University, 2016, 23(9): 2276–2283. DOI: 10.1007/s11771-016-3285-8.

    Article  Google Scholar 

  7. SARIGUL-KLIJN M, SARIGUL-KLIJN N, HUDSON G C, HOLDER L, FRITZ D, COLONEL L. Flight testing of a gravity air launch method to enable responsive space access [C]//AIAA Space 2007 Conference & Exposition. Long Beach, California, 2007, AIAA 2007–6146. DOI: 10.2514/6.2007-6146.

    Google Scholar 

  8. SARIGUL-KLIJN M, SARIGUL-KLIJN N, HUDSON G C, HOLDER L, LIESMAN G, SHELL D. Gravity air launching of earth-to-orbit space vehicles [C]//Space 2006. San Jose, California, AIAA 2006–7256. DOI: 10.2514/6.2006-7256.

    Google Scholar 

  9. BONACETO B, STALKER P. Design and development of a new cargo parachute and container delivery system [C]//18th AIAA Aerodynamic Decelerator Systems Technology Conference and Seminar. AIAA 2005–1647. DOI: 10.2514/6.2005-1647.

    Google Scholar 

  10. WOLF D. Dynamic stability of a non-rigid parachute and payload system [J]. Journal of Aircraft, 1971, 8(8): 607–609. DOI: 10.2514/3.59145.

    Article  Google Scholar 

  11. SARIGUL-KLIJN M, SARIGUL-KLIJN N, HUDSON G C, MCKINNRY B, MENZEL L, GRABOW E. Trade studies for air launching a small launch vehicle from a cargo aircraft [C]//43rd AIAA Aerospace Sciences Meeting and Exhibit. Reno, Nevada, 2005, AIAA 2005–621. DOI: 10.2514/6.2005-621

    Google Scholar 

  12. HUDSON G C. Quick-reach responsive launch system [C]//4th Responsive Space Conference. AIAA-RS4 2006–2003. DOI: 10.2514/6.2006-2003.

    Google Scholar 

  13. SARIGULKLIGN N, SATIGULKLIGN M, NOEL C. Air-Launching earth to orbit: Effects of launch conditions and vehicle aerodynamics [J]. Journal of Spacecraft and Rockets, 2005, 42(3): 569–572. DOI: 10.2514/1.8634.

    Article  Google Scholar 

  14. NOGUCHI Y, ARIME T, MATSUDA S, FUJI T, KANAYAMA H, DEPASQUALE D. Japanese air launch system concept and test plan [C]//Aerodynamic Decelerator Systems Technology Conferences. Daytona Beach, Florida, 2013, AIAA 2013–1331. DOI: 10.2514/6.2013-1331.

    Google Scholar 

  15. ZHANG Qing, QIAN Tang, PENG Yong, WANG Hai. Dynamics of parachute-capsule recovery system: Chaps. 3 [M]. Beijing: National Defense Industry Press, 2013: 30. (in Chinese)

    Google Scholar 

  16. FULLER J D, TOLSON R H, RAISZADEH B. Multibody parachute flight simulations using singular perturbation theory [C]//20th AIAA Aerodynamic Decelerator Systems Technology Conference and Seminar. Seattle, Washington, 2009, AIAA 2009–2920. DOI: 10.2514/6.2009-2920.

    Google Scholar 

  17. ROMERO L M, RAY E S. Application of statistically derived CPAS parachute parameters [C]//Aerodynamic Decelerator Systems Technology Conferences & AIAA Aerodynamic Decelerator Systems (ADS) Conference. Daytona Beach, Florida, 2013, AIAA 2013–1266. DOI: 10. 2514/6.2013-1266.

    Google Scholar 

  18. WU Gen, HE Xing, FRANK PAI P. Numerical and experimental investigation of nonlinear dynamics of highly flexible multibody systems [C]//52nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. Denver, Colorado, 2011, AIAA 2011–1870. DOI: 10.2514/6.2011-1870.

    Google Scholar 

  19. DESABRAIS K J. Aerodynamic forces on an airdrop platform [C]//18th AIAA Aerodynamic Decelerator Systems Technology Conference and Seminar. AIAA 2005–1634. DOI: 10.2514/6.2005-1634.

    Google Scholar 

  20. ZHANG Qing. A new parachute deployment model by multibody dynamics [C]//17th AIAA Aerodynamic Decelerator Systems Technology Conference and Seminar. Monterey, California, AIAA 2003–2134. DOI: 10.2514/6.2003-2134.

    Google Scholar 

  21. ZHANG Xiang, HUANG Yi, CHEN Xiao, HAN Wei. Modeling of a space flexible probe-cone docking system based on the Kane method [J]. Chinese Journal of Aeronautics, 2014, 27(2): 248–258. DOI: 10.1016/j.cja.2014. 02.020.

    Article  Google Scholar 

  22. ZHOU Chun, WANG Bo, LI Jing, XIONG Rong. Dynamic modeling of a wave glider [J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(9): 1295–1304. DOI: 10.1631/FITEE.1700294.

    Article  Google Scholar 

  23. ZHANG Jiu, XU Hao, ZHANG Deng, LIU Dong. Safety modeling and simulation of multi-factor coupling heavy-equipment airdrop [J]. Chinese Journal of Aeronautics, 2014, 27(7): 1062–1069. DOI: 10.1016/j.cja. 2014.08.014.

    Article  Google Scholar 

  24. DRAGOLJUB V, OLGICA L, VOJISLAV B. Development of dynamic-mathematical model of hydraulic excavator [J]. Journal of Central South University, 2017, 24(9): 2010–2018. DOI: https://doi.org/10.1007/s11771-017-3610-x.

    Article  Google Scholar 

  25. DOHERR K F, SCHILLING H. Nine-degree-of-freedom simulation of rotating parachute systems [J]. Journal of Aircraft, 1992, 29(5): 774–781. DOI: 10.2514/3.46245.

    Article  Google Scholar 

  26. KANG B S, SHYY Y K. Design of flexible bodies in multibody dynamic systems using equivalent static load method [C]//49th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Schaumburg, IL, 2008, AIAA2008-1708. DOI: 10.2514/6. 2008–1708.

    Google Scholar 

  27. RUI Xiao, YUN Lai, LU Yu, WANG Guo. Transfer matrix method of multibody system and its applications Chaps. 1, 7 [M]. Beijing: Science Press, 2008. (in Chinese)

    Google Scholar 

  28. ZHENG Wu, LI Ying, QU Liang, YUAN Guo. Dynamic envelope determination based on differential manifold theory [J]. Journal of Aircraft, 2017, 54(5): 2005–2009. DOI: 10.2514/1.C034258.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wu-ji Zheng  (郑无计).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, Wj., Zhang, Dc. Dynamic model for internally carried air-launched rocket. J. Cent. South Univ. 25, 2641–2653 (2018). https://doi.org/10.1007/s11771-018-3942-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-018-3942-1

Key words

关键词

Navigation