Skip to main content
Log in

Abstract

The motivation of this paper is to improve the accuracy of modal test for large-scale curved space structure, which we propose a kind of quasi-zero-stiffness (QZS) supporting method and develop a multiple-span circle curved beam model supported by geometrical nonlinear system applied in the complicated dynamical analysis. The QZS system is applied in the dynamic analysis for the circle antenna seemed as a multiple-span circle curved beam, for which the equivalent material parameters and the governing equation are obtained by energy equivalent method and Hamilton’s principle, respectively. Meanwhile, the theoretical modal analysis is carried out by applying transformation matrix method from order 1 to 4 with different supporting parameters, showing that the results obtained from QZS supports are more consistent with the free-constraint condition than linear supports with a weaker influence of supporting stiffness on the modal results. Moreover, the forced vibration and complicated dynamic behaviors are also taken into consideration by the averaging method and the fourth-order Runge–Kutta method, which indicated the system will vibrate in a chaotic state through the process double-periodical and quasi-periodical state, and the first two modalities will enter in the vibrating state with the same periodicity, which has a wider vibrating range for modal 1 than modal 2. Finally, the dynamic model of the circle truss is verified by the finite element method (FEM) in Ansys 2021, explaining the correctness of the dynamic model. The results in this paper indicate more ideal characteristics of the proposed quasi-zero-stiffness supporting method of modal test for the large-scale circle truss than linear elastic methods, especially in low-order modalities, which can obtain consistent modal results between ground tests and its space missions, providing a reference for engineering application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  • Cao Q, Xiong Y, Wiercigroch M (2013) A novel model of dipteran flight mechanism. Int J Dynam Control 1:1–11

    Article  Google Scholar 

  • Chen G, Wu Z, Gong C et al. (2020) DIC-based operational modal analysis of bridges. Adv Civil Eng 39:1–13

    Google Scholar 

  • Chen J, Zhang W, Zhang Y (2020) Equivalent continuum model and nonlinear breathing vibrations of rotating circular truss antenna subjected to thermal excitation. Thin-Walled Struct 157:107127

    Article  Google Scholar 

  • Coppotelli G, Grappasonni C, Di Trapani C (2013) Operational modal analysis of a solid rocket motor from firing test. J Spacecr Rocket 50:632–640

    Article  Google Scholar 

  • Feng S, H Y, Wen Y (2017) Application of Free Interface Modal Synthesis Method on Modal Test Boundary Transformation of One Missile,2017 3rd International Conference on Applied Mechanics and Mechanical Automation,2017: 57-61

  • Habaka M, Farag S, Khalil M et al. (2020) Experimental and computational dynamic structural analysis of free-flight rockets, IOP conference series. Mater Sci Eng 973:1–7

    Google Scholar 

  • Han B, Xu Y, Yao J et al. (2019) Design and analysis of a scissors double-ring truss deployable mechanism for space antenna. Aerosp Sci Technol 93:1–10

    Article  Google Scholar 

  • Hao Z, Cao Q (2014) A novel dynamical model for GVT nonlinear supporting system with stable-quasi-zero-stiffness. J Theor Appl Mech 52:199–213

    Google Scholar 

  • He S, Tang T, Xu E et al. (2020) Vibration control analysis of vehicle steering system based on combination of finite-element analysis and modal testing. J Vib Control 26:88–101

    Article  MathSciNet  Google Scholar 

  • Jacobs S, Coconnier C, DiMaio D (2012) Deployable auxetic shape memory alloy cellular antenna demonstrator: design, manufacturing and modal testing. Smart Mater Struct 21:1–12

    Article  Google Scholar 

  • Liu M, Cao D (2020) Equivalent dynamic model of the space antenna truss. AIAA J 58:1851–1863

    Article  Google Scholar 

  • Liu M, Cao D, Li J et al. (2022) Dynamic modeling and vibration control of a large flexible space truss. Meccanica 57:1017–1033

    Article  MathSciNet  Google Scholar 

  • Liu M, Cao D, Zhang X et al. (2020) Nonlinear dynamic responses of beamlike truss based on the equivalent nonlinear beam model. Int J Mech Sci 194:1–14

    Google Scholar 

  • Liu M, Cao D, Zhu D (2021) Coupled vibration analysis for equivalent dynamic model of the space antenna truss. Appl Math Model 89:285–298

    Article  MathSciNet  MATH  Google Scholar 

  • Liu G, Chen G, Cui F (2021) Nonlinear dynamic analysis of ring truss antenna equivalent to the cylindrical shell with thermal excitation. Eur J Mech / A Solids 85:1–18

    Article  MathSciNet  MATH  Google Scholar 

  • Liu Y, Li X, Qian Y (2022) Rigid-flexible coupled dynamic and control for thermally induced vibration and attitude motion of a spacecraft with hoop-truss antenna. Appl Sci 12:1–20

    Google Scholar 

  • Liu L, Shan J, Zhang Y (2016) Dynamics modeling and analysis of spacecraft with large deployable hoop-truss antenna. J Spacecr Rocket 53:471–479

    Article  Google Scholar 

  • Liu T, Zhang W (2017) Nonlinear dynamics of composite laminated circular cylindrical shell clamped along a generatrix and with membranes at both ends. Nonlinear Dyn 90:1393–1417

    Article  Google Scholar 

  • Lu W, Du X, Zeng C (2017) Application of Hammering Method Modal Testing in Larger Structure 2017 International Conference on Computer Systems, Electronics and Control, 2017: 188-192

  • Ma Z, Ding Q, Tang Y (2020) Operational modal analysis of a liquid-filled cylindrical structure with decreasing filling mass by multivariate stochastic parameter evolution methods. Int J Mech Sci 172:105420

    Article  Google Scholar 

  • Ma G, Xu M, Dong L (2021) Multi-point suspension design and stability analysis of a scaled hoop truss antenna structure. Int J Struct Stab Dyn 21:2150077

    Article  MathSciNet  Google Scholar 

  • Martin B, Salehian A (2016) Mass and stiffness effects of harnessing cables on structural dynamics: continuum modeling. AIAA J 54:2881–2904

    Article  Google Scholar 

  • Noor A, Anderson M, Green W (1978) Continuum models for beam and plate-like lattice structure. AIAA J 12:1219–1228

    Article  Google Scholar 

  • Noor A, Nemeth M (1980) Analysis of spatial beamlike lattices with rigid joint. Comput Methods Appl Mech Eng 1:35–59

    Article  MATH  Google Scholar 

  • Noor A, Russell W (1986) Anisotropic continuum models for beam like lattice trusses. Comput Methods Appl Mech Eng 3:257–277

    Article  MATH  Google Scholar 

  • Pandit JK, Mahapatra DR, Pandiyan R (2016) Modal analysis of power electronics module of spacecraft and its health monitoring-an approach. Proc Eng 144:283–288

    Article  Google Scholar 

  • Salehian A, Chen Y (2012) On strain-rate dependence of kinetic energy in homogenization approach: theory and experiment. AIAA J 10:2029–2033

    Article  Google Scholar 

  • Salehian A, Ibrahim M, Seigler TM (2014) Damping in periodic structures: a continuum modeling approach. AIAA J 52:569–590

    Article  Google Scholar 

  • Salehian A, Inman D (2008) Dynamic analysis of a lattice structure by homogenization: experimental validation. J Sound Vib 316:180–197

    Article  Google Scholar 

  • Shen Z, Li H, Liu X et al. (2019) Thermal-structural dynamic analysis of a satellite antenna with the cable-network and hoop-truss supports. J Therm Stresses 42:1339–1356

    Article  Google Scholar 

  • Sirigulenga B, Zhang W, Liu T (2020) Vibration modal experiments and modal interactions of a large space deployable antenna with carbon fiber material and ring-truss structure. Eng Struct 207:1–13

    Google Scholar 

  • Sun Y, Zhang W, Yao M (2017) Multi-pulse chaotic dynamics of circular mesh antenna with 1: 2 internal resonances. Int J Appl Mech 9:1–38

    Article  Google Scholar 

  • Wang H, Zhao J, Xue Y (2022) Application of Stewart platform in the low-frequency vibration characteristic test of space truss deployable antenna on satellite. Int J Aerospace Eng 2022:1–8

    Google Scholar 

  • Wickramasinghe V, Chen Y, Zimcik D et al. (2013) Modal survey test and model correlation of the CASSIOPE spacecraft. Exp Tech 37:15–23

    Article  Google Scholar 

  • Wu R, Zhang W, Chen J (2022) Dynamic modeling and analytical global mode shapes of a folded beam-ring structure for a truss antenna reflector with two arms. Appl Math Model 110:542–561

    Article  MathSciNet  MATH  Google Scholar 

  • Xia J, Song H (2017) Modal parameter identification of structure under base excitation using vibration test data. Proceed Inst Mech Eng, Part G: J Aerospace Eng 231:1428–1450

    Article  Google Scholar 

  • Yang T, Cao Q, Hao Z (2021) A novel nonlinear mechanical oscillator and its application in vibration isolation and energy harvesting. Mech Syst Signal Process 155:1–20

    Article  Google Scholar 

  • Zhang X, Cao Q, Qiu H et al. (2022) Dynamic analysis of a loading-adapting quasi-zero-stiffness isolation system based on the rolling lobe air-springs. J Vib Eng Technol 7:1–12

    Google Scholar 

  • Zhang W, Chen J, Zhang Y et al. (2017) Continuous model and nonlinear dynamic responses of circular mesh antenna clamped at one side. Eng Struct 151:115–135

    Article  Google Scholar 

  • Zhang W, Liu T, Xi A et al. (2018) Resonant responses and chaotic dynamics of composite laminated circular cylindrical shell with membranes. J Sound Vib 423:65–99

    Article  Google Scholar 

  • Zhao C, Zhao X, Chen S (2021) Encapsulation based method for natural frequency identification of deployable solar arrays with multiple plates. Shock Vib 2021:1–13

    Google Scholar 

  • Zhu S, Li D, Lei Y et al. (2021) Effect of drive control on dynamic characteristics of spacecraft tracking-drive flexible systems. Mech Syst Signal Process 150:107352–107373

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support from the major project of Natural Science Foundation of China under Grant No.11732006.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingjie Cao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Appendix A

Appendix A

$$\begin{aligned} \left\{ \begin{aligned}&{{a}_{11}}=\cos \left( \alpha {{l}_{k}} \right) ,{{a}_{12}}=\sin \left( \alpha {{l}_{k}} \right) ,{{a}_{13}}={{e}^{{{\beta }_{1}}{{l}_{k}}}}\cos \left( \beta {{l}_{k}} \right) ,{{a}_{14}}={{e}^{{{\beta }_{1}}{{l}_{k}}}}\sin \left( \beta {{l}_{k}} \right) \\&{{a}_{15}}={{e}^{{{\gamma }_{1}}{{l}_{k}}}}\cos \left( \gamma {{l}_{k}} \right) ,{{a}_{16}}={{e}^{{{\gamma }_{1}}{{l}_{k}}}}\sin \left( \gamma {{l}_{k}} \right) , {{a}_{21}}=-\alpha \sin \left( \alpha {{l}_{k}} \right) ,{{a}_{22}}=\alpha \cos \left( \alpha {{l}_{k}} \right) \\&{{a}_{23}}={{e}^{{{\beta }_{1}}{{l}_{k}}}}\left( {{\beta }_{1}}\cos \left( \beta {{l}_{k}} \right) -\beta \sin \left( \beta {{l}_{k}} \right) \right) ,{{a}_{24}}={{e}^{{{\beta }_{1}}{{l}_{k}}}}\left( {{\beta }_{1}}\sin \left( \beta {{l}_{k}} \right) +\beta \cos \left( \beta {{l}_{k}} \right) \right) \\&{{a}_{25}}={{e}^{{{\gamma }_{1}}{{l}_{k}}}}\left( {{\gamma }_{1}}\cos \left( \gamma {{l}_{k}} \right) -\gamma \sin \left( \gamma {{l}_{k}} \right) \right) ,{{a}_{26}}={{e}^{{{\gamma }_{1}}{{l}_{k}}}}\left( {{\gamma }_{1}}\sin \left( \gamma {{l}_{k}} \right) +\gamma \cos \left( \gamma {{l}_{k}} \right) \right) \\&{{a}_{31}}=\frac{\cos \left( \alpha {{l}_{k}} \right) }{{{\eta }_{1}}},{{a}_{32}}=\frac{\sin \left( \alpha {{l}_{k}} \right) }{{{\eta }_{2}}}, {{a}_{33}}=\frac{{{e}^{{{\beta }_{1}}{{l}_{k}}}}\cos \left( \beta {{l}_{k}} \right) }{{{\eta }_{3}}},{{a}_{34}}=\frac{{{e}^{{{\beta }_{1}}{{l}_{k}}}}\sin \left( \beta {{l}_{k}} \right) }{{{\eta }_{4}}}\\&{{a}_{35}}=\frac{{{e}^{{{\gamma }_{1}}{{l}_{k}}}}\cos \left( \gamma {{l}_{k}} \right) }{{{\eta }_{5}}},{{a}_{36}}=\frac{{{e}^{{{\gamma }_{1}}{{l}_{k}}}}\sin \left( \gamma {{l}_{k}} \right) }{{{\eta }_{6}}},{{a}_{41}}=-\alpha \sin \left( \alpha {{l}_{k}} \right) \left( \frac{1}{R}+\frac{1}{{{\eta }_{1}}} \right) , \\&{{a}_{42}}=\alpha \cos \left( \alpha {{l}_{k}} \right) \left( \frac{1}{R}+\frac{1}{{{\eta }_{2}}} \right) ,{{a}_{43}}={{e}^{{{\beta }_{1}}{{l}_{k}}}}\left( {{\beta }_{1}}\cos \left( \beta {{l}_{k}} \right) -\beta \sin \left( \beta {{l}_{k}} \right) \right) \left( \frac{1}{{{\eta }_{3}}}+\frac{1}{R} \right) \\&{{a}_{44}}={{e}^{{{\beta }_{1}}{{l}_{k}}}}\left( {{\beta }_{1}}\sin \left( \beta {{l}_{k}} \right) +\beta \cos \left( \beta {{l}_{k}} \right) \right) \left( \frac{1}{R}+\frac{1}{{{\eta }_{4}}} \right) \\&{{a}_{45}}={{e}^{{{\gamma }_{1}}{{l}_{k}}}}\left( {{\gamma }_{1}}\cos \left( \gamma {{l}_{k}} \right) -\gamma \sin \left( \gamma {{l}_{k}} \right) \right) \left( \frac{1}{R}+\frac{1}{{{\eta }_{5}}} \right) \\&{{a}_{46}}={{e}^{{{\gamma }_{1}}{{l}_{k}}}}\left( {{\gamma }_{1}}\sin \left( \gamma {{l}_{k}} \right) +\beta \cos \left( \gamma {{l}_{k}} \right) \right) \left( \frac{1}{{{\eta }_{6}}}+\frac{1}{R} \right) \\&{{a}_{51}}=\cos \left( \alpha {{l}_{k}} \right) \left( \frac{1}{{{\eta }_{1}}R}+{{\alpha }^{2}} \right) ,{{a}_{52}}=\sin \left( \alpha {{l}_{k}} \right) \left( \frac{1}{{{\eta }_{2}}R}+{{\alpha }^{2}} \right) \\&{{a}_{53}}={{e}^{{{\beta }_{1}}{{l}_{k}}}}\left( \frac{\cos \left( \beta {{l}_{k}} \right) }{{{\eta }_{3}}R}-\left( {{\beta }_{1}}^{2}\cos \left( \beta {{l}_{k}} \right) -2\beta {{\beta }_{1}}\sin \left( \beta {{l}_{k}} \right) -{{\beta }^{2}}\cos \left( \beta {{l}_{k}} \right) \right) \right) \\&{{a}_{54}}={{e}^{{{\beta }_{1}}{{l}_{k}}}}\left( \frac{\sin \left( \beta {{l}_{k}} \right) }{{{\eta }_{4}}R}-\left( {{\beta }_{1}}^{2}\sin \left( \beta {{l}_{k}} \right) +2\beta {{\beta }_{1}}\cos \left( \beta {{l}_{k}} \right) -{{\beta }^{2}}\sin \left( \beta {{l}_{k}} \right) \right) \right) \\&{{a}_{55}}={{e}^{{{\gamma }_{1}}\theta }}\left( \frac{\cos \left( \gamma {{l}_{k}} \right) }{{{\eta }_{5}}R}-\left( {{\gamma }_{1}}^{2}\cos \left( \gamma {{l}_{k}} \right) -2\gamma {{\gamma }_{1}}\sin \left( \gamma {{l}_{k}} \right) -{{\gamma }^{2}}\cos \left( \gamma {{l}_{k}} \right) \right) \right) \\&{{a}_{56}}={{e}^{{{\gamma }_{1}}{{l}_{k}}}}\left( \frac{\sin \left( \gamma {{l}_{k}} \right) }{{{\eta }_{6}}R}-\left( {{\gamma }_{1}}^{2}\sin \left( \gamma {{l}_{k}} \right) +2\gamma {{\gamma }_{1}}\cos \left( \gamma {{l}_{k}} \right) -{{\gamma }^{2}}\sin \left( \gamma {{l}_{k}} \right) \right) \right) \\&{{a}_{61}}=-\alpha \sin \left( \alpha {{l}_{k}} \right) \left( E{{I}_{r}}\left( \frac{1}{{{\eta }_{1}}R}+{{\alpha }^{2}} \right) +\frac{G{{I}_{\theta }}}{R}\left( 1+\frac{1}{{{\eta }_{1}}R} \right) \right) \\&{{a}_{62}}=\alpha \cos \left( \alpha {{l}_{k}} \right) \left( E{{I}_{r}}\left( \frac{1}{{{\eta }_{2}}R}+{{\alpha }^{2}} \right) +\frac{G{{I}_{\theta }}}{R}\left( 1+\frac{1}{{{\eta }_{2}}R} \right) \right) \\&{{a}_{63}}={{k}_{1}}{{e}^{{{\beta }_{1}}{{l}_{k}}}}\cos \left( {{\beta }_{1}}{{l}_{k}} \right) +{{e}^{{{\beta }_{1}}{{l}_{k}}}}\left( E{{I}_{r}}{{a}_{631}}+\frac{G{{I}_{\theta }}}{R}{{a}_{632}} \right) \\&{{a}_{64}}={{k}_{1}}{{e}^{{{\beta }_{1}}{{l}_{k}}}}\sin \left( {{\beta }_{1}}{{l}_{k}} \right) +{{e}^{{{\beta }_{1}}{{l}_{k}}}}\left( E{{I}_{r}}{{a}_{641}}+\frac{G{{I}_{\theta }}}{R}{{a}_{642}} \right) \\&{{a}_{65}}={{k}_{1}}{{e}^{{{\gamma }_{1}}{{l}_{k}}}}\cos \left( {{\beta }_{1}}{{l}_{k}} \right) +{{e}^{{{\gamma }_{1}}{{l}_{k}}}}\left( E{{I}_{r}}{{a}_{651}}+\frac{G{{I}_{\theta }}}{R}{{a}_{652}} \right) \\ \end{aligned} \right. \end{aligned}$$
(A1)
$$\begin{aligned} \left\{ \begin{aligned}&{{a}_{66}}={{k}_{1}}{{e}^{{{\gamma }_{1}}{{l}_{k}}}}\sin \left( {{\beta }_{1}}{{l}_{k}} \right) +{{e}^{{{\gamma }_{1}}{{l}_{k}}}}\left( E{{I}_{r}}{{a}_{661}}+\frac{G{{I}_{\theta }}}{R}{{a}_{662}} \right) \\&{{a}_{631}}=\frac{{{\beta }_{1}}\cos \left( \beta {{l}_{k}} \right) -\beta \sin \left( \beta {{l}_{k}} \right) }{{{\eta }_{3}}R}-\left( \left( {{\beta }^{3}}-3\beta \beta _{1}^{2} \right) \sin \left( \beta {{l}_{k}} \right) +\left( \beta _{1}^{3}-3{{\beta }_{1}}{{\beta }^{2}} \right) \cos \left( \beta {{l}_{k}} \right) \right) \\&{{a}_{632}}={{\beta }_{1}}\cos \left( \beta {{l}_{k}} \right) -\beta \sin \left( \beta {{l}_{k}} \right) +\frac{{{\beta }_{1}}\cos \left( \beta {{l}_{k}} \right) -\beta \sin \left( \beta {{l}_{k}} \right) }{{{\eta }_{3}}R} \\&{{a}_{641}}=\frac{{{\beta }_{1}}\sin \left( \beta {{l}_{k}} \right) +\beta \cos \left( \beta {{l}_{k}} \right) }{{{\eta }_{4}}R}-\left( \left( 3\beta \beta _{1}^{2}-{{\beta }^{3}} \right) \cos \left( \beta {{l}_{k}} \right) +\left( \beta _{1}^{3}-3{{\beta }^{2}}{{\beta }_{1}} \right) \sin \left( \beta {{l}_{k}} \right) \right) \\&{{a}_{642}}={{\beta }_{1}}\sin \left( \beta {{l}_{k}} \right) +\beta \cos \left( \beta {{l}_{k}} \right) +\frac{{{\beta }_{1}}\sin \left( \beta \theta \right) {{l}_{k}}+\beta \cos \left( \beta {{l}_{k}} \right) }{{{\eta }_{4}}R} \\&{{a}_{651}}=\frac{{{\gamma }_{1}}\cos \left( \gamma {{l}_{k}} \right) -\beta \sin \left( \gamma {{l}_{k}} \right) }{{{\eta }_{5}}R}-\left( \left( {{\gamma }^{3}}-3\gamma \gamma _{1}^{2} \right) \sin \left( \gamma {{l}_{k}} \right) +\left( \gamma _{1}^{3}-3{{\gamma }_{1}}{{\gamma }^{2}} \right) \cos \left( \gamma {{l}_{k}} \right) \right) \\&{{a}_{652}}={{\gamma }_{1}}\cos \left( \gamma {{l}_{k}} \right) -\gamma \sin \left( \gamma {{l}_{k}} \right) +\frac{{{\gamma }_{1}}\cos \left( \gamma {{l}_{k}} \right) -\beta \sin \left( \gamma {{l}_{k}} \right) }{{{\eta }_{5}}R} \\&{{a}_{661}}=\frac{{{\gamma }_{1}}\sin \left( \gamma {{l}_{k}} \right) +\beta \cos \left( \gamma {{l}_{k}} \right) }{{{\eta }_{6}}R}-\left( \left( 3\gamma \gamma _{1}^{2}-{{\gamma }^{3}} \right) \cos \left( \gamma {{l}_{k}} \right) +\left( \gamma _{1}^{3}-3{{\gamma }^{2}}{{\gamma }_{1}} \right) \sin \left( \gamma {{l}_{k}} \right) \right) \\&{{a}_{662}}={{\gamma }_{1}}\sin \left( \gamma {{l}_{k}} \right) +\gamma \cos \left( \gamma {{l}_{k}} \right) +\frac{{{\gamma }_{1}}\sin \left( \gamma {{l}_{k}} \right) +\beta \cos \left( \gamma {{l}_{k}} \right) }{{{\eta }_{6}}R} \\ \end{aligned} \right. \end{aligned}$$
(A2)
$$\begin{aligned} \left\{ \begin{aligned}&{{b}_{42}}=\alpha \left( \frac{1}{R}+\frac{1}{{{\eta }_{2}}} \right) ,{{b}_{43}}={{\beta }_{1}}\left( \frac{1}{{{\eta }_{3}}}+\frac{1}{R} \right) ,{{b}_{44}}=\beta \left( \frac{1}{R}+\frac{1}{{{\eta }_{4}}} \right) \\&{{b}_{45}}={{\gamma }_{1}}\left( \frac{1}{R}+\frac{1}{{{\eta }_{5}}} \right) ,{{b}_{46}}=\gamma \left( \frac{1}{{{\eta }_{6}}}+\frac{1}{R} \right) {{A}_{6}}, {{b}_{51}}=\left( \frac{1}{{{\eta }_{1}}R}+{{\alpha }^{2}} \right) \\&{{b}_{53}}=-\left( {{\beta }_{1}}^{2}-{{\beta }^{2}}-\frac{1}{{{\eta }_{3}}R} \right) ,{{b}_{54}}=-2\beta {{\beta }_{1}},{{b}_{55}}=-\left( {{\gamma }_{1}}^{2}-{{\gamma }^{2}}-\frac{1}{{{\eta }_{5}}R} \right) \\&{{b}_{56}}=-2\gamma {{\gamma }_{1}}, {{b}_{62}}=\alpha \left( E{{I}_{r}}\left( \frac{1}{{{\eta }_{2}}R}+{{\alpha }^{2}} \right) +\frac{G{{I}_{\theta }}}{R}\left( 1+\frac{1}{{{\eta }_{2}}R} \right) \right) \\&{{b}_{63}}=\left( E{{I}_{r}}\left( \frac{{{\beta }_{1}}}{{{\eta }_{3}}R}-\left( \beta _{1}^{3}-3{{\beta }_{1}}{{\beta }^{2}} \right) \right) +\frac{G{{I}_{\theta }}}{R}\left( {{\beta }_{1}}+\frac{{{\beta }_{1}}}{{{\eta }_{3}}R} \right) \right) \\&{{b}_{64}}=\left( E{{I}_{r}}\left( \frac{\beta }{{{\eta }_{4}}R}-\left( 3\beta \beta _{1}^{2}-{{\beta }^{3}} \right) \right) +\frac{G{{I}_{\theta }}}{R}\left( \beta +\frac{\beta }{{{\eta }_{4}}R} \right) \right) \\&{{b}_{65}}=\left( E{{I}_{r}}\left( \frac{{{\gamma }_{1}}}{{{\eta }_{5}}R}-\left( \gamma _{1}^{3}-3{{\gamma }_{1}}{{\gamma }^{2}} \right) \right) +\frac{G{{I}_{\theta }}}{R}\left( {{\gamma }_{1}}+\frac{{{\gamma }_{1}}}{{{\eta }_{5}}R} \right) \right) \\&{{b}_{66}}=\left( E{{I}_{r}}\left( \frac{\beta }{{{\eta }_{6}}R}-\left( 3\gamma \gamma _{1}^{2}-{{\gamma }^{3}} \right) \right) +\frac{G{{I}_{\theta }}}{R}\left( \gamma +\frac{\beta }{{{\eta }_{6}}R} \right) \right) \\ \end{aligned} \right. \end{aligned}$$
(A3)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Cao, Q. Dynamic Analysis of a Multiple-Span Curved Truss Supported by Geometrical Nonlinear System. Iran J Sci Technol Trans Mech Eng (2023). https://doi.org/10.1007/s40997-023-00677-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40997-023-00677-3

Keywords

Navigation