Skip to main content
Log in

Dilation angle variations in plastic zone around tunnels in rocks-constant or variable dilation parameter

在常数或变量扩容参数下岩石隧道塑性区扩容角的变化

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Dilation angle is a significant parameter needed for numerical simulation of tunnels. Even though dilation parameter is physically variable and dependent on confinement and experienced shear plastic strain based on the existing dilation models, numerical simulations of tunnels and underground openings with constant dilation parameter usually lead to satisfactory results in practical use. This study aims to find out why constant dilation angle is enough under practical conditions to simulate numerically tunnels and underground excavations in spite of the fact that dilation angle is variable in laboratory and experimental scale. With this aim, this work studies how mobilized dilation angle varies in a plastic zone surrounding a tunnel. For the circular tunnel under uniform in situ stress field, the stepwise finite difference approximation analytical solution considering strain softening rock mass behavior with mobilized dilation angle was used to study how mobilized dilation angle varies in plastic zone around tunnel under very different conditions. In practical conditions determined in this study, dilative behavior of all over the plastic zone around the tunnel can be approximated to constant dilation angle in the middle region of the plastic zone. Moreover, the plastic zone displacements for mobilized and constant dilation angle models are compared with each other. Further investigation under more general non-uniform in situ stress conditions and non-circular tunnels is performed by using the commercial finite difference software to numerically simulate the Mine-by experimental tunnel of AECL (Atomic Energy of Canada Limited) and the arched tunnel. Although the Mine-by and arched tunnels were numerically simulated based on the mobilized dilation angle model, the variability associated with dilation angle around the simulated Mine-by and arched tunnels is insignificant, and dilation angle is approximately constant in the plastic zone.

摘要

扩容角是隧道数值模拟中一个重要的参数。 虽然现有扩容模型表明扩容参数是变量, 与约束有关且经受剪切应变, 但利用常数扩容参数对隧道和地下孔洞进行数值模拟, 在实际应用中可以得到令人满意的结果。 本研究旨在查明为什么在实验室和试验过程中, 扩容角为变量, 而在实际上隧道和地下采挖的数值模拟过程中可以用常数进行模拟。 研究了隧道塑性区扩容角的变化情况。 对于具有均匀原位应力场的圆形隧道, 采用考虑应变软化岩体行为的梯度有限差分近似解析解研究了在不同条件下, 移动扩容角在隧道周围塑性区的变化规律。 在本研究确定的实际条件下, 隧道周围塑性区全部的扩容行为可以近似为塑性区中部的恒定扩容角。 此外, 比较了移动扩容角模型和定扩容角模型的塑性区位移。 利用商用有限差分软件对 AECL (加拿大原子能有限公司) 的矿山试验隧道和拱形隧道进行了数值模拟, 对非均匀应力条件和非圆形隧道进行了进一步研究。 虽然在移动扩容角模型的基础上对矿山及拱形巷道进行了数值模拟, 但模拟矿山及拱形巷道周围的扩容角变化不明显, 塑性区扩容角近似恒定。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. ZHAO X G, CAI M. Influence of plastic shear strain and confinement-dependent rock dilation on rock failure and Displacement near an excavation boundary [J]. International Journal of Rock Mechanics and Mining Sciences, 2010, 47:723–738. DOI: https://doi.org/10.1016/j.ijrmms.2010.04.003.

    Article  Google Scholar 

  2. KAISER P K, MCCREATH D R, TANNANT D D. Canadian rockburst support handbook [M]. Sudbury: Geomechanics Research Centre/MIRARCO, 1996.

    Google Scholar 

  3. BI J, ZHOU X P, XU X M. Numerical simulation of failure process of rock-like materials subjected to impact loads [J]. Int Geomech J, 2017, 17(3): 04016073. DOI: https://doi.org/10.1061/(ASCE)GM.1943-5622.0000769.

    Article  Google Scholar 

  4. BI J, ZHOU X P, QIAN Q H. The 3D numerical simulation for the propagation process of multiple pre-existing flaws in rock-like materials subjected to biaxial compressive loads [J]. Rock Mech Rock Eng, 2016, 49(5): 1611–1627. DOI: https://doi.org/10.1007/s00603-015-0867-y.

    Article  Google Scholar 

  5. ZHOU X P, BI J, QIAN Q H. Numerical simulation of crack growth and coalescence in rock-like materials containing multiple pre-existing flaws [J]. Rock Mech Rock Eng, 2015, 48(3): 1097–1114. DOI: https://doi.org/10.1007/s00603-014-0627-4.

    Article  Google Scholar 

  6. ZHOU X P, ZHAO Y, QIAN Q H. A novel meshless numerical method for modeling progressive failure processes of slopes [J]. Engineering Geology, 2015, 192: 139–153. DOI: https://doi.org/10.1016/j.enggeo.2015.04.005.

    Article  Google Scholar 

  7. SILLING S A. Reformulation of elasticity theory for discontinuities and long-range forces [J]. Journal of the Mechanics and Physics of Solids, 2000, 48(1): 175–209. DOI: https://doi.org/10.1016/S0022-5096(99)00029-0.

    Article  MathSciNet  MATH  Google Scholar 

  8. ZHOU X P, GU X B, WANG Y T. Numerical simulations of propagation, bifurcation and coalescence of cracks in rocks [J]. International Journal of Rock Mechanics and Mining Sciences, 2015, 80: 241–254. DOI: https://doi.org/10.1016/j.ijrmms.2015.09.006.

    Article  Google Scholar 

  9. DETOURNAY E. Elastoplastic model of a deep tunnel for a rock with variable dilatancy [J]. Rock Mech Rock Eng, 1986, 19: 99–108. DOI: https://doi.org/10.1007/BF01042527.

    Article  Google Scholar 

  10. ALEJANO L R, ALONSO E. Considerations of the dilation angle in rocks and rock masses [J]. International Journal of Rock Mechanics & Mining Sciences, 2005, 42: 481–507. DOI: https://doi.org/10.1016/j.ijrmms.2005.01.003.

    Article  Google Scholar 

  11. ZHAO X G, CAI M. A mobilized dilation angle model for rocks [J]. International Journal of Rock Mechanics & Mining Sciences, 2010, 47: 368–384. DOI: https://doi.org/10.1016/j.ijrmms.2009.12.007.

    Article  Google Scholar 

  12. WALTON G. Improving continuum models for excavations in rock masses under high stress through an enhanced understanding of post-yield dilatancy [D]. Canada: Queen’s University, 2014. https://doi.org/qspace.library.queensu.ca/handle/1974/12655.

    Google Scholar 

  13. SALEHNIA F, COLLIN F, CHARLIER R. On the variable dilatancy angle in rocks around underground galleries [J]. Rock Mech Rock Eng, 2016: 1–15. DOI: https://doi.org/10.1007/s00603-016-1126-6.

    Google Scholar 

  14. WALTON G, DIEDRICHS M S. A new model for the dilation of brittle rocks based on laboratory compression test data with separate treatment of dilatancy mobilization and decay [J]. Geotechnical Geology Engineering, 2015, 33: 661–679. DOI: https://doi.org/10.1007/s10706-015-9849-9.

    Article  Google Scholar 

  15. WALTON G, DIEDERICHS M S. Dilation and post-peak behaviour inputs for practical engineering analysis [J]. Geotechnical Geology Engineering, 2015, 33: 15–34. DOI: https://doi.org/10.1007/s10706-014-9816-x.

    Article  Google Scholar 

  16. VERMEE P A, DE BORST R. Non-associated plasticity for soils, concrete and rock [J]. Heron, 1984, 29(3): 1–64. https://doi.org/repository.tudelft.nl/islandora/object/uuid:4ee188ab-8ce0-4df3-adf5-9010ebfaabf0?collection=research.

    Google Scholar 

  17. BRADY B H G, BROWN E T. Rock Mechanics for Underground Mining [M]. London: Chapman & Hall, 1993.

    Google Scholar 

  18. EDWIN T, BROWN M, JOHN W, BRANKO B, LADANYI F, HOEK E. Ground response curves for rock tunnels [J]. Journal of Geotechnical Engineering, 1983, 109: 15–39. https://doi.org/ascelibrary.org/doi/abs/10.1061/%28ASCE%290733-9410%281983%29109%3A1%2815%29.

    Article  Google Scholar 

  19. ALEJANO L R, ALONSO E, RODRIGUEZ-DONO A, FERNANDEZ-MANIN G. Application of the Convergenceconfinement Method to Tunnels in Rock Masses Exhibiting Hoek–Brown Strain-softening Behaviour [J]. International Journal of Rock Mechanics And Mining Sciences, 2010, 47: 150–160. DOI: https://doi.org/10.1016/j.ijrmms.2009.07.008.

    Article  Google Scholar 

  20. LEE Y K, PIETRUSZCZAK S. A new numerical procedure for elasto-plastic analysis of acircular opening excavated in astrain-softening rock mass [J]. Tunnelling and Underground Space Technology, 2008, 23: 588–599. DOI: https://doi.org/10.1016/j.tust.2007.11.002.

    Article  Google Scholar 

  21. KATEBIAN E, MOLLADAVOODI H. Practical ground response curve considering post peak rock mass behavior [J]. European Journal of Environmental and Civil Engineering. 2017, 21(1): 1–23. DOI: https://doi.org/10.1080/19648189.2015.1090928.

    Article  Google Scholar 

  22. FARROKH E, ROSTAMI J. Correlation of tunnel convergence with TBM operational parameters and chip size in the Ghomroud tunnel, Iran [J]. Tunnelingand Underground Space Technology, 2008, 23: 700–710. DOI: https://doi.org/10.1016/j.tust.2008.01.005.

    Article  Google Scholar 

  23. EDELBRO C. Different approaches for simulating brittle failure in two hard rock mass cases: A parametric study [J]. Rock Mech Rock Eng, 2010, 43: 151–165. DOI: https://doi.org/10.1007/s00603-008-0025-x.

    Article  Google Scholar 

  24. MARTIN C D. Strength of massive Lac du Bonnet granite around underground openings [D]. Winnipeg: University of Manitoba, 1993.

    Google Scholar 

  25. MARTIN C D, READ R S. AECL’s Mine-by experiment: A test tunnel in brittle rock [C]// Proceedings of the 2nd North American Rock Mechanics. Montreal: A. A. Balkema, 1997.

    Google Scholar 

  26. ZHAO X G, CAIM, CAI M. Considerations of rock dilation on modeling failure and deformation of hard rocks—A case study of the mine-by test tunnel in Canada [J]. Journal of Rock Mechanics and Geotechnical Engineering, 2010, 2(4): 338–349. DOI: https://doi.org/10.3724/SP.J.1235.2010.00338.

    Google Scholar 

  27. HAJIABDOLMAJID V, KAISER P K, MARTIN C D. Modelling brittle failure of rock [J]. International Journal of Rock Mechanics & Mining Sciences, 2002, 39: 731–741. DOI: https://doi.org/10.1016/S1365-1609(02)00051-5.

    Article  Google Scholar 

  28. EDELBRO C. Numerical modelling of observed fallouts in hard rock masses usingan instantaneous cohesion-softening friction-hardening model [J]. Tunneling and Underground Space Technology, 2010, 24, 398–409. DOI: https://doi.org/10.1016/j.tust.2008.11.004.

    Article  Google Scholar 

  29. DE BORST R. Bifurcations in finite element models with a non-associated flow law [J]. International Journal of Numerical and Analytical Methods in Geomechanics, 1988, 12: 99–116. DOI: https://doi.org/10.1002/nag.1610120107.

    Article  MATH  Google Scholar 

  30. VARDOULAKIS I. Shear band inclination and shear modulus of sand in biaxial tests [J]. International Journal of Numerical and Analytical Methods in Geomechanics, 1980, 4: 103–119. DOI: https://doi.org/10.1002/nag.1610040202.

    Article  MATH  Google Scholar 

  31. HOBBS B E, ORD A. Numerical simulation of shear band formation in a frictional-dilatational material [J]. Ingenieur-Archiv, 1989, 59: 209–220. https://doi.org/link.springer.com/article/10.1007/BF00532251.

    Article  Google Scholar 

  32. KIRKEBϕ S. A numerical study of excavations in low permeable soils [D]. Trondheim: University of Trondheim, 1994.

    Google Scholar 

  33. BERNIER F, LI X, BASTIAENS W, ORTIZ L, VAN GEET M, WOUTERS L, FRIEG B, BLU MLING P, DESRUES J, VIAGGIANI G. Fracturesand self-healing within the excavation disturbed zone in clays (selfrac) [R]. Final report to EC (Project FIKW-CT2001-00182). 2007, EUR, 22585.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamed Molladavoodi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Molladavoodi, H., Rahmati, M. Dilation angle variations in plastic zone around tunnels in rocks-constant or variable dilation parameter. J. Cent. South Univ. 25, 2550–2566 (2018). https://doi.org/10.1007/s11771-018-3935-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-018-3935-0

Key words

关键词

Navigation