Skip to main content
Log in

Elasticity solution of laminated beams with temperature-dependent material properties under a combination of uniform thermo-load and mechanical loads

均匀热载荷和机械载荷共同作用下具有温度依赖材料特性的层合梁的弹性力学解

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

An exact solution for simply-supported laminated beams with material properties variable with temperature under a combination of uniform thermo-load and mechanical loads was investigated, based on the two-dimensional (2-D) thermo-elasticity theory. Firstly, the beam was divided into a series of layers with uniform material properties along the interfaces of the beam. The uniform thermo-load acted on each layer was transformed into a combination of the normal surface forces acted at the two ends and the transverse thermo-load. Secondly, the state space method was employed to obtain the general solutions of displacements and stresses in an arbitrary layer. Thirdly, based on the interfacial continuity conditions between adjacent layers, the relations of displacement and stress components between the top and bottom layers of the beam were recursively derived by use of the transfer-matrix method. The unknowns in the solutions can be solved by the mechanical loads acted on the top and bottom surfaces. The convergence of the present solutions was checked. The comparative study of the present solutions with the Timoshenko’s solutions and the finite element (FE) solutions was carried out. The effects of material properties variable with temperature on the thermo-elastic behavior of laminated beams were discussed in detail.

摘要

本文基于二维热弹性力学理论, 考虑材料物性参数的温度依赖性, 研究了均匀热荷载和机械荷载联合作用下简支叠层梁的精确解。 首先将叠层梁沿各组分材料的界面划分为一系列单层, 以保证每一单层材料的物理性能均匀。 利用等效模型, 将作用在单层内的均匀热荷载转化为作用于层两端的法向面力和横向热荷载。 其次, 利用状态空间法求得任一层内位移和应力的一般解。 第三, 根据相邻层界面的连续性条件, 使用传递矩阵法递推得到顶层和底层位移和应力的关系, 由作用于梁上下表面的机械荷载确定未知系数。 研究了本文解的收敛性, 并给出了与 Timoshenko 的解和有限元解的比较。 最后通过数值算例, 详细分析了随温度变化的材料物理参数对叠层梁力学性能的影响。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. FORABOSCHI P. Hybrid laminated-glass plate: Design and assessment [J]. Composite Structures, 2013, 106: 250–263. DOI: https://doi.org/10.1016/j.compstruct.2013.05.041.

    Article  Google Scholar 

  2. SPERANZINI E, AGNETTI S. Strengthening of glass beams with steel reinforced polymer (SRP) [J]. Composites Part B: Engineering, 2014, 67: 280–289. DOI: https://doi.org/10.1016/j.compositesb.2014.06.035.

    Article  Google Scholar 

  3. JHA D K, KANT T, SINGH R K. A critical review of recent research on functionally graded plates [J]. Composite Structures, 2013, 96: 833–849. DOI: https://doi.org/10.1016/j.compstruct.2012.09.001.

    Article  Google Scholar 

  4. LIU Wu-xiang. Analysis of steady heat conduction for 3D axisymmetric functionally graded circular plate [J]. Journal of Central South University, 2013, 20(6): 1616–1622. DOI: https://doi.org/10.1007/s11771-013-1654-0.

    Article  Google Scholar 

  5. SU H, BANERJEE J R, CHEUNG C W. Dynamic stiffness formulation and free vibration analysis of functionally graded beams [J]. Composite Structures, 2013, 106: 854–862. DOI: https://doi.org/10.1016/j.compstruct.2013.06.029.

    Article  Google Scholar 

  6. TRINH L C, VO T P, THAI H T, NGUYEN T K. An analytical method for the vibration and buckling of functionally graded beams under mechanical and thermal loads [J]. Composites Part B: Engineering, 2016, 100: 152–163. DOI: https://doi.org/10.1016/j.compositesb.2016.06.067.

    Article  Google Scholar 

  7. ABBAS I A. Generalized thermoelastic interaction in functional graded material with fractional order three-phase lag heat transfer [J]. Journal of Central South University, 2015, 22(5): 1606–1613. DOI: https://doi.org/10.1007/s11771-015-2677-5.

    Article  Google Scholar 

  8. CHANG Y F, CHEN Y H, SHEU M S, YAO G C. Residual stress-strain relationship for concrete after exposure to high temperatures [J]. Cement and Concrete Research, 2006, 36(10): 1999–2005. DOI: https://doi.org/10.1016/j.cemconres.2006.05.029.

    Article  Google Scholar 

  9. YANG Xiu-ying, ZHAO Jin-cheng. Experimental study on stress-strain-temperature models for structural steel [J]. Journal of Harbin Institute of Technology (New Series), 2011, 18(1): 6–10. DOI: https://doi.org/10.11916/j.issn.1005-9113.2011.01.002.

    Google Scholar 

  10. LI Guo-qiang, JIANG Shou-chao, YIN Ying-zhi, CHEN Kai, LI Ming-fei. Experimental studies on the properties of constructional steel at elevated temperatures [J]. Journal of Structural Engineering, 2003, 129(12): 1717–1721. DOI: https://doi.org/10.1061/(ASCE)0733-9445(2003)129:12(1717).

    Article  Google Scholar 

  11. TAUCHERT T R. Thermally induced flexure, buckling, and vibration of plates [J]. Applied Mechanics Reviews, 1991, 44(8): 347–360. DOI: https://doi.org/10.1115/1.3119508.

    Article  Google Scholar 

  12. GHUGAL Y M, SHIMPI R P. A review of refined shear deformation theories of isotropic and anisotropic laminated beams [J]. Journal of Reinforced Plastics and Composites, 2001, 20(3): 255–272. DOI: https://doi.org/10.1106/N95G-ERA1-A1CMRD7E.

    Article  Google Scholar 

  13. GHUGAL Y M, SHIMPI R P. A review of refined shear deformation theories of isotropic and anisotropic laminated plates [J]. Journal of Reinforced Plastics and Composites, 2002, 21(9): 775–813. DOI: https://doi.org/10.1177/073168402128988481.

    Article  Google Scholar 

  14. REDDY J N, ARCINIEGA R A. Shear deformation plate and shell theories: From Stavsky to present [J]. Mechanics of Advanced Materials and Structures, 2004, 11(6): 535–582. DOI: https://doi.org/10.1080/15376490490452777.

    Article  Google Scholar 

  15. CARRERA E, BRISCHETTO S. A survey with numerical assessment of classical and refined theories for the analysis of sandwich plates [J]. Applied Mechanics Reviews, 2009, 62(1): 010803. DOI: https://doi.org/10.1115/1.3013824.

    Article  Google Scholar 

  16. SAYYAD A S, GHUGAL Y M. Bending, buckling and free vibration of laminated composite and sandwich beams: A critical review of literature [J]. Composite Structures, 2017, 171: 486–504. DOI: https://doi.org/10.1016/j.compstruct.2017.03.053.

    Article  Google Scholar 

  17. TIMOSHENKO S. Analysis of bi-metal thermostats [J]. Journal of the Optical Society of America, 1925, 11(3): 233–255. DOI: https://doi.org/10.1364/JOSA.11.000233.

    Article  Google Scholar 

  18. MOHANDES M, GHASEMI A R. Modified couple stress theory and finite strain assumption for nonlinear free vibration and bending of micro/nanolaminated composite Euler-Bernoulli beam under thermal loading [J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2016, 231(21): 4044–4056. DOI: https://doi.org/10.1177/0954406216656884.

    Google Scholar 

  19. FU Y, WANG J, HU S. Analytical solutions of thermal buckling and postbuckling of symmetric laminated composite beams with various boundary conditions [J]. Acta Mechanica, 2014, 225(1): 13–29. DOI: https://doi.org/10.1007/s00707-013-0941-z.

    Article  MathSciNet  MATH  Google Scholar 

  20. MORADI S, MANSOURI M H. Thermal buckling analysis of shear deformable laminated orthotropic plates by differential quadrature [J]. Steel and Composite Structures, 2012, 12(2): 129–147. DOI: https://doi.org/10.12989/scs.2012.12.2.129.

    Article  Google Scholar 

  21. SHATERZADEH A R, ABOLGHASEMI S, REZAEI R. Finite element analysis of thermal buckling of rectangular laminated composite plates with circular cut-out [J]. Journal of Thermal Stresses, 2014, 37(5): 604–623. DOI: https://doi.org/10.1080/01495739.2014.885322.

    Article  Google Scholar 

  22. HAN J W, KIM J S, CHO M. New enhanced first-order shear deformation theory for thermo-mechanical analysis of laminated composite and sandwich plates [J]. Composites Part B, 2017, 116: 422–450. DOI: https://doi.org/10.1016/j.compositesb.2016.10.087.

    Article  Google Scholar 

  23. KHDEIR A A, REDDY J N. Thermal stresses and deflections of cross-ply laminated plates using refined plate theories [J]. Journal of Thermal Stresses, 1991, 14(4): 419–438. DOI: https://doi.org/10.1080/01495739108927077.

    Article  Google Scholar 

  24. NAJAFIZADEH M M, HEYDARI H R. Thermal buckling of functionally graded circular plates based on higher order shear deformation plate theory [J]. European Journal of Mechanics-A/Solids, 2004, 23(6): 1085–1100. DOI: https://doi.org/10.1016/j.euromechsol.2004.08.004.

    Article  MATH  Google Scholar 

  25. SINGH S, SINGH J, SHUKLA K K. Buckling of laminated composite plates subjected to mechanical and thermal loads using meshless collocations [J]. Journal of Mechanical Science and Technology, 2013, 27(2): 327–336. DOI: https://doi.org/10.1007/s12206-012-1249-y.

    Article  Google Scholar 

  26. KAPURIA S, DUMIR P C, AHMED A. An efficient higher order zigzag theory for composite and sandwich beams subjected to thermal loading [J]. International Journal of Solids and Structures, 2003, 40(24): 6613–6631. DOI: https://doi.org/10.1016/j.ijsolstr.2003.08.014.

    Article  MATH  Google Scholar 

  27. GHUGAL Y M, KULKARNI S K. Thermal response of symmetric cross-ply laminated plates subjected to linear and non-linear thermo-mechanical loads [J]. Journal of Thermal Stresses, 2013, 36(5): 466–479. DOI: https://doi.org/10.1080/01495739.2013.770664.

    Article  Google Scholar 

  28. GHUGAL Y M, KULKARNI S K. Flexural analysis of cross-ply laminated plates subjected to nonlinear thermal and mechanical loadings [J]. Acta Mechanica, 2013, 224(3): 675–690. DOI: https://doi.org/10.1007/s00707-012-0774-1.

    Article  MathSciNet  MATH  Google Scholar 

  29. SAYYAD A S, SHINDE B M, GHUGAL Y M. Thermoelastic bending analysis of orthotropic plates using hyperbolic shear deformation theory [J]. Composites: Mechanics, Computations, Applications: An International Journal, 2013, 4(3): 257–278. DOI: https://doi.org/10.1615/CompMechComputApplIntJ.v4.i3.50.

    Article  Google Scholar 

  30. SAYYAD A S, GHUGAL Y M., MHASKE B A. A four-variable plate theory for thermoelastic bending analysis of laminated composite plates [J]. Journal of Thermal Stresses, 2015, 38(8): 904–925. DOI: https://doi.org/10.1080/01495739.2015.1040310.

    Article  Google Scholar 

  31. XU Ye-peng, ZHOU Ding. Two-dimensional thermoelastic analysis of beams with variable thickness subjected to thermo-mechanical loads [J]. Applied Mathematical Modelling, 2012, 36(12): 5818–5829. DOI: https://doi.org/10.1016/j.apm.2012.01.048.

    Article  MathSciNet  MATH  Google Scholar 

  32. QIAN Hai, ZHOU Ding, LIU Wei-qing, FANG Hai. Elasticity solution of laminated beams subjected to thermo-loads [J]. Journal of Central South University, 2015, 22: 2297–2305. DOI: https://doi.org/10.1007/s11771-015-2754-9.

    Article  Google Scholar 

  33. QIAN Hai, ZHOU Ding, LIU Wei-qing, FANG Hai, LU Wei-dong. 3-D elasticity solutions of layered rectangular plates subjected to thermo-loads [J]. Journal of Thermal Stresses, 2015, 38(4): 377–398. DOI: https://doi.org/10.1080/01495739.2014.985570.

    Article  Google Scholar 

  34. LV Chao-feng, CHEN Wei-qiu, ZHONG Zheng. Twodimensional thermoelasticity solution for functionally graded thick beams [J]. Science in China Series G: Physics, Mechanics and Astronomy, 2006, 49(4): 451–460. DOI: https://doi.org/10.1007/s11433-006-0451-2.

    Article  Google Scholar 

  35. PILIPCHUK V N, BERDICHEVSKY V L, IBRAHIM R A. Thermo-mechanical coupling in cylindrical bending of sandwich plates [J]. Composite Structures, 2010, 92(11): 2632–2640. DOI: https://doi.org/10.1016/j.compstruct.2010.03.007.

    Article  Google Scholar 

  36. ALIBEIGLOO A. Thermo elasticity solution of sandwich circular plate with functionally graded core using generalized differential quadrature method [J]. Composite Structures, 2016, 136: 229–240. DOI: https://doi.org/10.1016/j.compstruct.2015.10.012.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ding Zhou  (周叮).

Additional information

Foundation item: Project(2012CB026205) supported by the National Basic Research Program of China; Projects(51608264, 51778289) supported by the National Natural Science Foundation of China; Project(2014Y01) supported by the Transportation Science and Technology Project of Jiangsu Province, China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Zhou, Wl., Zhou, D. et al. Elasticity solution of laminated beams with temperature-dependent material properties under a combination of uniform thermo-load and mechanical loads. J. Cent. South Univ. 25, 2537–2549 (2018). https://doi.org/10.1007/s11771-018-3934-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-018-3934-1

Key words

关键词

Navigation