Skip to main content
Log in

Surface property variations in flotation performance of calcite particles under different grinding patterns

不同磨矿方式下方解石浮选行为差异的颗粒表面特性

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Based on the working principles of particle bed comminution, particles produced by high-pressure grinding rolls (HPGR) have surface properties different from particles produced by other grinding patterns, which exert great influence on mineral flotation. Flotation performances of calcite particles under different grinding patterns involving the use of HPGR, a jaw crusher, a dry ball mill, a wet ball mill, and a wet rod mill were studied using single mineral flotation tests. The surface properties of the particles under different grinding patterns were characterized to determine the flotation performance variation in terms of specific surface area, particle size distribution, AFM, XPS, and zeta potential. The results show that particles ground by HPGR exhibited improved flotation performance within the lower range of grinding fineness in both NaOL and dodecyl amine flotation systems compared to the particles prepared using other grinding patterns. Specific surface area, particle size distribution, surface roughness, Fe(III) contamination, binding energy, and zeta potential are greatly influenced by grinding patterns, which is the main cause of the flotation performance variation.

摘要

基于料层粉碎工作方式,高压辊磨制备的矿物颗粒具有区别于其他磨矿方式制备颗粒的表面特 性,对矿物浮选会产生较大的影响。本文研究了高压辊磨、颚式破碎、干式球磨、湿式球磨及湿式棒 磨下方解石纯矿物颗粒的浮选行为,并通过比表面积、粒径分布、原子力学显微镜、表面电子能谱及 动电位等手段表征了不同磨矿方式制备颗粒的表面特性以揭示其浮选机理。结果表明:当磨矿细度较 低时,相比于其他磨矿方式高压辊磨制备的方解石颗粒在油酸钠和十二胺体系均能够获得更好的浮选 指标;由磨矿方式导致的矿物颗粒比表面积、粒度分布、表面粗糙度、Fe3+沾染物、键合能及Zeta 电 位差异是其浮选行为差异化的主要原因。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. MUTZE T. Energy dissipation in particle bed comminution [J]. International Journal of Mineral Processing, 2015, 136: 15–19. DOI: 10.1016/j.minpro.2014.10.004.

    Article  Google Scholar 

  2. TAVARES L M. Particle weakening in high-pressure roll grinding [J]. Minerals Engineering, 2005, 18(7): 651–657. DOI: 10.1016/j.mineng.2004.10.012.

    Article  Google Scholar 

  3. AYDOGA N N A, BENZER H. Comparison of the overall circuit performance in the cement industry: High compression milling vs. ball milling technology [J]. Minerals Engineering, 2011, 24(3, 4): 211–215. DOI: 10.1016/j.mineng.2010.08.005.

    Article  Google Scholar 

  4. SCHONERT K. A first survey of grinding with highcompression roller mills [J]. International Journal of Mineral Processing, 1988, 22(1–4): 401–412. DOI: https://doi.org/10.1016/0301-7516(88)90075-0.

    Article  Google Scholar 

  5. AYDOGA N N A, BENZER H. High pressure grinding rolls (HPGR) applications in the cement industry [J]. Minerals Engineering, 2006, 19(2): 130–139. DOI: 10.1016/j.mineng. 2005.08.011.

    Article  Google Scholar 

  6. KODALIA P, DHAWAN N, DEPCI T, LIN C L, MILLER J D. Particle damage and exposure analysis in HPGR crushing of selected copper ores for column leaching [J]. Minerals Engineering, 2011, 24(13): 1478–1487. DOI: 10.1016/j.mineng.2011.07.010.

    Article  Google Scholar 

  7. FAN Jian, QIU Guan, JIANG Tao, GUO Yu, HAO Hai, YANG Yong. Mechanism of high pressure roll grinding on compression strength of oxidized hematite pellets [J]. Journal of Central South University, 2012, 19(9): 2611–2619. DOI: 10.1007/s11771-012-1318-5.

    Article  Google Scholar 

  8. SUN Ye. Economic evaluation and risk analysis of high-pressure grinding process [J]. Metal Mine, 2012, (11): 63–66. (in Chinese)

    Google Scholar 

  9. SARAMAK D. Mathematical models of particle size distribution in simulation analysis of high-pressure grinding roll operations [J]. Physicochemical Problems of Mineral Processing, 2013, 49(1): 121–131. DOI: 10.5277/ppmp130112.

    Google Scholar 

  10. XU Peng, LI Jing, LUO Heng, YE Hong. Models for the particle size distribution of high-pressure grinding rolls based on fractal theory [J]. Journal of China University of Mining & Technology, 2016, 45(5): 1030–1037. (in Chinese)

    Google Scholar 

  11. TANG Yuan, YIN Wan, MA Ying, CHI Xiaopeng, HUANG Fa. Influence of comminuting methods on full-slime cyaniding of low grade gold ore [J]. The Chinese Journal of Nonferrous Metals, 2016, 26(2): 423–429. (in Chinese)

    Article  Google Scholar 

  12. HOU Ying, YIN Wan, YU Guang, YANG Chun, GAI Zhuang, ZHAO Tong, XIAO Li. Effect and mechanism of selective crushing and liberation of Mo-Cu ore from Bangpu crushed by high pressure grinding rolls [J]. The Chinese Journal of Nonferrous Metals, 2016, 26(7): 1538–1546. (in Chinese)

    Google Scholar 

  13. OLIVEIRA D M, SOBRAL L G S, OLSON G J, OLSON S B. Acid leaching of a copper ore by sulphur-oxidizingmicroorganisms [J]. Hydrometallurgy, 2014, 147: 223–227. DOI: 10.1016/j.hydromet.2014.05.019.

    Article  Google Scholar 

  14. BAFGHI M S, EMAMI A H, ZAKERI A. Effect of specific surface area of a mechanically activated chalcopyrite on its rate of leaching in sulfuric acid-ferric sulfate media [J]. Metallurgical and Materials Transactions B—Process Metallurgy and Materials Processing Science, 2013, 44(5): 1166–1172. DOI: 10.1007/s11663-013-9890-0.

    Article  Google Scholar 

  15. NORORI M A, BRITO P P R, HADLER K, COLE K, CILLIERS J J. The effect of particle size distribution on froth stability in flotation [J]. Separation and Purification Technology, 2017, 84: 240–247. DOI: 10.1016/j.seppur.2017. 04.022.

    Article  Google Scholar 

  16. RAHIMI M, ASLANI M R, REZAI B. Influence of surface roughness on flotation kinetics of quartz [J]. Journal of Central South University, 2012, 19(5): 1206–1211. DOI: 10.1007/s11771-012-1130-2.

    Article  Google Scholar 

  17. KWAK D H, KIM M S. Flotation of algae for water reuse and biomass production: Role of zeta potential and surfactant to separate algal particles [J]. Water Science and Technology, 2015, 72(5): 762–769. DOI: 10.2166/wst.2015.265.

    Article  Google Scholar 

  18. HAN Xian, CHEN Xiao, YANG Xue, BAI Hai. Nanometer scale surface roughness measurement based on AFM [J]. Journal of Chongqing University (Nature Science Edition), 2007, 30(2): 5–8. (in Chinese)

    Google Scholar 

  19. XIE Zhen, JIANG Hao, SUN Zhong, YANG Qin. Direct AFM measurements of morphology and interaction force at solid−liquid interfaces between DTAC/CTAC and mica [J]. Journal of Central South University, 2016, 23(9): 2182–2190. DOI: 10.1007/s11771-016-3275-x.

    Article  Google Scholar 

  20. JAYCOCK M J, PARFITT G D. Chemistry of interfaces [M]. Chichester, UK: Ellis Horwood Publications, 1981: 150−167.

    Google Scholar 

  21. HU Yue. Mineral flotation [M]. Changsha: Central South University Press, 2014: 124–176. (in Chinese)

    Google Scholar 

  22. ZENG Fan, HU Yong. Practical technology of mineral processing [M]. Xuzhou: China University of Mining and Technology Press, 2001: 12–35. (in Chinese)

    Google Scholar 

  23. WANG Jie. Effect of ultra fine particle properties on the separation of ultra clean coal [D]. Beijing: China University of Mining &Technology, 2016: 80–87. (in Chinese)

    Google Scholar 

  24. WANG Jun, LI Hai, SHUANG Chen, LI Ai, WANG Cheng, HUANG Yu. Effect of pore structure on adsorption behavior of ibuprofen by magnetic anion exchange resins [J]. Microporous and Mesoporous Material, 2015, 210: 94–100. DOI: 10.1016/j.micromeso.2015.02.026.

    Article  Google Scholar 

  25. XU Long, HU Yue, WU Hou, TIAN Jia, LIU Jing, GAO Zhi. Surface crystal chemistry of spodumene with different size fractions and implications for flotation [J]. Separation and Purification Technology, 2016, 169: 33–42. DOI: 10.1016/j.seppur.2016.06.005.

    Article  Google Scholar 

  26. HU Yue, GAO Zhi, SUN Wei, LIU Xiao. Anisotropic surface energies and adsorption behaviors of scheelite crystal [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2012, 415: 439–448. DOI: 10.1016/j.colsurfa.2012.09.038.

    Article  Google Scholar 

  27. SHI F N, MORRISON R, CERVELLIN A, BURN F, MUSA F. Comparison of energy efficiency between ball mills and stirred mills in coarse grinding [J]. Minerals Engineering, 2009, 22(7, 8): 673–680. DOI: 10.1016/j.mineng.2008. 12.002.

    Article  Google Scholar 

  28. WANG Li. Non-metallic mineral crushing engineering and equipment [M]. Beijing: Chemical Industry Press, 2011: 12–28. (in Chinese)

    Google Scholar 

  29. HOU Ying, YIN Wan, DING Ya, YAO Jin, LUO Xi, WANG Yu, SUN Da. A comparative study of grinding kinetics equation of the product produced by different comminuting process [J]. Nonferrous Metals Mineral Processing Section, 2014(4): 70–74. (in Chinese)

    Google Scholar 

  30. BRUCKARD W J, SPARROW G J, WOODCOCK J T. A review of the effects of the grinding environment on the flotation of copper sulphides [J]. International Journal of Mineral Processing, 2011, 100(1, 2): 1–13. DOI: 10.1016/j.minpro.2011.04.001.

    Article  Google Scholar 

  31. WATERSON C N, TASKER P A, FARINATO R, NAGARAJ D R, SHACKLETON N, MORRISON C A. A computational and experimental study on the binding of dithio ligands to sperrylite, pentlandite, and platinum [J]. Journal of Physical Chemistry C, 2016, 120(39): 22476–22488. DOI: 10.1021/acs.jpcc.6b07655.

    Article  Google Scholar 

  32. GERSON A R, SMART R S C, LI J, KAWASHIMA N, WEEDON D, TRIFFETT B, BRADSHAW D. Diagnosis of the surface chemical influences on flotation performance: Copper sulfides and molybdenite [J]. International Journal of Mineral Processing, 2012, (106–109): 16–30. DOI: 10.1016/j.minpro.2012.07.008.

    Article  Google Scholar 

  33. ZHANG Ying, WANG Yu, HU Yue, WEN Shu, WANG Jin. First-principle theory calculation of electronic structures of scheelite, fluorite and calcite [J]. Chinese Journal of Rare Metals, 2014, 38(6): 1106–1113. (in Chinese)

    Google Scholar 

  34. JIN Jun, GAO Hui, CHEN Xu, PENG Yong, MIN Fan. The flotation of aluminosilicate polymorphic minerals with anionic and cationic collectors [J]. Minerals Engineering, 2016, 99: 123–132. DOI: 10.1016/j.mineng.2016.08.005.

    Article  Google Scholar 

  35. TAN Xin, HE Fa, SHANG Yan, YIN Wan. Flotation behavior and adsorption mechanism of (1-hydroxy-2-methyl-2-octenyl) phosphonic acid to cassiterite [J]. Transactions of Nonferrous Metals Society of China, 2016, 26(9): 2469–2478. DOI: 10.1016/S1003-6326(16)64368-6.

    Article  Google Scholar 

  36. GU Guo, ZHONG Su. Electrochemical properties on surface of galena in grinding system and its influence on flotation [J]. Journal of Central South University, 2012, 39(1): 54–58. (in Chinese)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng-yun Xu  (许鹏云).

Additional information

Foundation item: Project(2013EG132088) supported by Special Program for Research Institutes of the Ministry of Science and Technology, China; Project(12010402c187) supported by Key Science and Technology Program of Anhui Province, China; Project(GJKJ-14-89) supported by Science and Technology Program of Nanchang Institute of Science and Technology, China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Py., Li, J., Hu, C. et al. Surface property variations in flotation performance of calcite particles under different grinding patterns. J. Cent. South Univ. 25, 1306–1316 (2018). https://doi.org/10.1007/s11771-018-3827-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-018-3827-3

Key words

关键词

Navigation