Skip to main content
Log in

Tensile properties of strain-hardening cementitious composites containing polyvinyl-alcohol fibers hybridized with polypropylene fibers

添加聚乙烯醇纤维水泥复合材料的硬化拉伸性能

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Partially replacing polyvinyl-alcohol (PVA) fibers with polypropylene (PP) fibers in strain-hardening cementitious composites (fiber hybridization) modify certain mechanical properties of these materials. The hybridization based on the introduction of low-modulus hydrophobic polypropylene fibers improves the ductility and the strain-hardening behavior of the cementitious composites containing polyvinyl-alcohol fibers of different types (PVA-SHCC). Pull-out tests indicate that adding PP fibers increases the energy capacity of the hybrid composite with respect to the material containing only PVA fibers under tensile loading, and PP-fiber geometry (i.e., section shape and length) is a key factor in enhancing the strain capacity.

摘要

在应变硬化水泥基复合材料(纤维杂交)中, 用聚丙烯部分取代聚乙烯醇(PVA)纤维, 可以改善材料的力学性能。 通过引入低模量、 疏水聚丙烯纤维, 提高聚乙烯醇纤维水泥复合材料(PVA-SHCC)的拉伸性和应变硬化性能。 拉伸试验结果表明, 加入聚丙烯纤维增强了掺杂复合材料的载荷拉伸性能。 聚丙烯纤维的几何形状(即截面形状和长度)是提高复合材料应变能力的重要因素。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. LI V C. On engineered cementitious composites (ECC): A review of the material and its applications [J]. Journal of Advanced Concrete Technology, 2003, 1: 215–230.

    Article  Google Scholar 

  2. LI V C. Tailoring ECC for special attributes: A review [J]. International Journal of Concrete Structures and Materials, 2012, 6(3): 135–144.

    Article  Google Scholar 

  3. TOSUN-FELEKOGLU K, FELEKOGLU B, RANANDE R, LEE B Y, LI V C. The role of flaw size and fiber distribution on tensile ductility of PVA-ECC [J]. Composites Part B: Engineering, 2014, 56: 536–545.

    Article  Google Scholar 

  4. YANG E H. Designing added functions in engineered cementitious composites [D]. USA: University of Michigan, 2008.

    Google Scholar 

  5. REDON C, LI V C, WU C, HOSHIRO H, SAITO T, OGAWA A. Measuring and modifying interface properties of PVA fibers in ECC matrix [J]. Journal of Materials in Civil Engineering, 2001, 13: 399–406.

    Article  Google Scholar 

  6. ZHANG J, JU X. Investigation on stress-crack opening relationship of engineered cementitious composites using inverse approach [J]. Cement and Concrete Research, 2011, 41: 903–912.

    Article  Google Scholar 

  7. LI V C, WANG S, WU C. Tensile strain-hardening behavior of polyvinyl alcohol engineered cementitious composite (PVA-ECC) [J]. ACI Material Journal, 2001, 98: 483–492.

    Google Scholar 

  8. LI V C, WU C, WANG S, OGAWA A, SAITO T. Interface tailoring for strain-hardening polyvinyl alcohol-engineered cementitious composite (PVA-ECC) [J]. ACI Material Journal, 2002, 99: 463–472.

    Google Scholar 

  9. YANG E H, YANG Y, LI V C. Use of high volumes of fly ash to improve ECC mechanical properties and material greenness [J]. ACI Material Journal, 2007, 104: 620–628.

    Google Scholar 

  10. KIM J K, KIM J S, HA G J, KIM Y Y. Tensile and fiber dispersion performance of ECC (engineered cementitious composites) produced with ground granulated blast furnace slag [J]. Cement and Concrete Research, 2007, 37: 1096–1105.

    Article  Google Scholar 

  11. PAN Z, WU C, LIU J, WANG W, LIU J. Study on mechanical properties of cost-effective polyvinyl alcohol engineered cementitious composites (PVA-ECC) [J]. Construction and Building Materials, 2015, 78: 397–404.

    Article  Google Scholar 

  12. AHMED S F U, MIHASHI H. Strain hardening behavior of lightweight hybrid polyvinyl alcohol (PVA) fiber reinforced cement composites [J]. Materials and Structures, 2011, 44: 1179–1191.

    Article  Google Scholar 

  13. NGUYEN D L, KIM D J, RYU G S, KOH K T. Size effect on flexural behavior of ultra-high-performance hybrid fiber-reinforced concrete [J]. Composites Part B: Engineering, 2013, 45: 1104–1116.

    Article  Google Scholar 

  14. LAWLER J S, ZAMPINI D, SHAH S P. Micro-fiber and macro-fiber hybrid fiber reinforced concrete [J]. Journal of Materials in Civil Engineering, 2005, 17: 595–604.

    Article  Google Scholar 

  15. BANTHIA N, SOLEIMANI S M. Flexural response of hybrid fiber reinforced cementitious composites [J]. ACI Material Journal, 2005, 102: 382–389.

    Google Scholar 

  16. SILVA E R, COELHO J F J, BORDADO J C. Strength improvement of mortar composites reinforced with newly hybrid-blended fibres: Influence of fibres geometry and morphology [J]. Construction and Building Materials, 2013, 40: 473–480.

    Article  Google Scholar 

  17. BANTHIA N, NANDAKUMAR N. Crack growth resistance of hybrid fiber reinforced cement composites [J]. Cement and Concrete Composites, 2003, 25(1): 3–9.

    Article  Google Scholar 

  18. ZHANG J, MAALEJ M, QUEK S T. Performance of hybrid-fiber ECC blast/shelter panels subjected to drop weight impact [J]. Journal of Materials in Civil Engineering, 2007, 19(10): 855–863.

    Article  Google Scholar 

  19. SOE K T, ZHANG Y X, ZHANG L C. Material properties of a new hybrid fibre-reinforced engineered cementitious composite [J]. Construction and Building Materials, 2013, 43: 399–407.

    Article  Google Scholar 

  20. AHMED S F U, MAALEJ M, PARAMASIVAM P. Flexural responses of hybrid steel–polyethylene fiber reinforced cement composites containing high volume fly ash [J]. Construction and Building Materials, 2007, 21(5): 1088–1097.

    Article  Google Scholar 

  21. LAWLER J S, WILHELM T, ZAMPINI D, SHAH S P. Fracture processes of hybrid fiber-reinforced mortar [J]. Materials and Structures, 2003, 36(3): 197–208.

    Article  Google Scholar 

  22. ROSSI P. High performance multimodal fiber reinforced cement composites (HPMFRCC): The LCPC experience [J]. ACI Materials Journal, 1997, 94(6): 328–331.

    Google Scholar 

  23. PAKRAVAN H R, LATIFI M, JAMSHIDI M. Hybrid short fiber reinforcement system in concrete: A review [J]. Construction and Building Materials, 2017, 142: 280–294.

    Article  Google Scholar 

  24. BANTHIA N, GUPTA R. Hybrid fiber reinforced concrete (HyFRC): Fiber synergy in high strength matrices [J]. Materials and Structures, 2004, 37(10): 707–716.

    Article  Google Scholar 

  25. HORIKOSHI T, OGAWA A, SAITO T, HOSHIRO H, FISCHER G, LI V C. Properties of polyvinyl alcohol fiber as reinforcing materials for cementitious composites [C]// Proceedings of the International RILEM Workshop on High Performance Fiber Reinforced Cementitious Composites in Structural Applications. Denmark, 2006: 145–153.

    Google Scholar 

  26. PAKRAVAN H R, JAMSHIDI M, LATIFI M. Performance of fibers embedded in a cementitious matrix [J]. Journal of Applied Polymer Science, 2010, 116(3): 1247–1253.

    Google Scholar 

  27. SOULIOTI D V, BARKOULA N M, PAIPETIS A, MATIKAS T E. Effects of fibre geometry and volume fraction on the flexural behaviour of steel-fibre reinforced concrete [J]. Strain, 2011, 47(1): 535–541.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. R. Pakravan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pakravan, H.R., Jamshidi, M. Tensile properties of strain-hardening cementitious composites containing polyvinyl-alcohol fibers hybridized with polypropylene fibers. J. Cent. South Univ. 25, 51–59 (2018). https://doi.org/10.1007/s11771-018-3716-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-018-3716-9

Key words

关键词

Navigation