Skip to main content
Log in

Effect of montmorillonite on hydrate-based methane separation from mine gas

蒙脱石对水合物法分离煤矿瓦斯中甲烷的影响

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Three types of mine gas samples were used in the solutions of tetrahydrofuran (THF), sodium dodecyl sulfate (SDS) and THF-SDS with/without MMT respectively to investigate the effect of montmorillonite (MMT) on separation characteristics of methane recovered from mine gas based on hydrate method. The partition coefficient, separation factor and recovery rate were used to evaluate the effects of MMT, and the selection factor was primarily proposed to define the selectivity of mine gas hydrate in the relative target gases. The experimental results indicate that MMT could improve the following factors including hydration separation factor, the selection factor, the partition coefficient, and the recovery rate. Furthermore, the effect of SDS on the function of MMT is analyzed in the process of hydration separation. Finally, due to the results of the experiment, it is concluded that MMT hydration mechanism explores the effect of MMT enrichment methane from mine gas.

摘要

矿井瓦斯是以甲烷(CH4)为主的混合气体, CH4 是洁净、 高效的优质能源, 同时它也是对臭氧破坏能力极强的温室气体。 由于其浓度较低, 使得抽采瓦斯无法直接利用, 采用水合物法能够分离提纯抽采瓦斯中 CH4, 而该方法的关键科学问题是如何加快水合分离速率, 增大瓦斯水合物储气量, 提高 CH4 回收率。 蒙脱石(MMT)具有较好的吸附性和粘结性, 已有研究表明蒙脱石能够促进甲烷水合物形成。 据此针对 3 种瓦斯气样分别在 MMT-SDS、 MMT-THF、 MMT-SDS-THF 及空白体系中进行瓦斯水合分离实验, 考查了 MMT 对瓦斯水合分离效率、 CH4 回收率的影响规律。 结果表明: MMT 能够增大瓦斯水合分离因子和分配系数, 提高 CH4 回收率, 分析认为在瓦斯水合分离过程中, CH4 能够在 MMT 的特殊层间结构中形成水合物, 说明 MMT 对 CH4 具有选择性, 可提高瓦斯水合分离效率。 本文首次定义了选择因子, 以此参数评价水合物相对目标气体的富集能力, 实验结果表明 MMT 促进了 CH4 在水合物相中的富集。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. TAKAHISA U. Development of coal mine methane concentration technology for reduction of greenhouse gas emissions [J]. Science China (Technological Sciences), 2010, 40(1): 28–32.

    Google Scholar 

  2. LI Kong-zhai, WANG Hua, WEI Yong-gang, AO Xian-quan, LIU Ming-chun. Partial oxidation of methane to synthesis gas using lattice oxygen [J]. Progress in Chemistry, 2008, 20(9): 1306–1314.

    Google Scholar 

  3. WU Qiang, ZHANG Qiang, ZHANG Bao-yong. Influence of super-absorbent polymer on the growth rate of gas hydrate [J]. Safety Science, 2012, 50(4): 865–868.

    Article  Google Scholar 

  4. LINGA P, KUMAR R, ENGLEZOS P. The clathrate hydrate process for post and pre-combustion capture of carbon dioxide [J]. Journal of Hazardous Materials, 2007, 149(3): 625–629.

    Article  Google Scholar 

  5. SEBASTIEN B, JUAN G B, PHILLIP S. Reaction rate constant of methane clathrate formation [J]. Fuel, 2010, 89(2): 294–301.

    Article  Google Scholar 

  6. NIMALAN G, ROBERT A. Modelling hydrate formation kinetics of a hydrate promoter-water-natural gas system in a semi-batch spray reactor [J]. Chemical Engineering Science, 2004, 59(18): 3849–3863.

    Article  Google Scholar 

  7. TAKAHASHI M, KAWAMURA T, YAMAMOTO Y, OHNARI H, HIMURO S Z, SHAKUTSUI H. Effect of shrinking microbubble on gas hydrate formation [J]. The Journal of Chemical Physics B, 2003, 107(10): 2171–2173.

    Article  Google Scholar 

  8. ZHONG Y, ROGERS R E. Surfactant effect on gas hydrate formation [J]. Chemical Engineering Science, 2000, 55(19): 4175–4187.

    Article  Google Scholar 

  9. MAKOGON T Y, LARSEN R, KNIGHT C A, SLOAN E D. Melt growth of tetrahydrofuran clathrate hydrate and its inhibition: method and first results [J]. Journal of Crystal Growth, 1997, 179(1, 2): 258–262.

    Article  Google Scholar 

  10. CLENNELL M B, HOVLAND M, BOOTH J S, HENRY P, WINTERS W J. Formation of natural gas hydrates in marine sediments: Conceptual model of gas hydrate growth conditioned by host sediment properties [J]. J Geophys Res, 1999, 104(B10): 22985–23003.

    Article  Google Scholar 

  11. BEATRICE C, MIRKO F, ANDREA N, FRANCO C, FEDERICO R. Carbon dioxide capture using gas hydrate technology [J]. Journal of Energy and Power Engineering, 2013, 7(5): 883–890.

    Google Scholar 

  12. PETERS A, CANDAU S J. Kinetics of swelling of spherical and cylindrical gels [J]. Macromolecules, 1988, 21(7): 2278–2282.

    Article  Google Scholar 

  13. CHA S B, OUAR H, WILDEMAN T R. A third-surface effect on hydrate formation [J]. The Journal of Physical Chemistry, 1988, 92(23): 6492–6494.

    Article  Google Scholar 

  14. OUAR H, CHA S B, WILDEMAN T R. The formation of natural-gas hydrates in water-based drilling-fluids [J]. Transactions of I Chem E (A), 1992, 70(1): 48–54.

    Google Scholar 

  15. KOTKOSKIE T S, AL-UBALDI B, WILDEMAN T R, SLOAN E D. Inhibition of gas hydrates in water-based drilling muds [J]. SPE Drilling Engineering, 1992, 7(2): 130–136.

    Article  Google Scholar 

  16. CYGAN R T, GUGGENHEIM S, GROOS A F K. Molecular models for the intercalation of methane hydrate complexes in montmorillonite clay [J]. The Journal of Physical Chemistry B, 2004, 108(39): 15141–15149.

    Article  Google Scholar 

  17. PARK S H, SPOSITO G. Do montmorillonite surfaces promote methane hydrate formation? Monte Carlo and molecular dynamics simulations [J]. The Journal of Physical Chemistry B, 2003, 107(10): 2281–2290.

    Article  Google Scholar 

  18. TITILOYE J O, SKIPPER N T. Molecular dynamics simulation of methane in sodium montmorillonite clay hydrates at elevated pressures and temperatures [J]. Molecular Physics, 2001, 99(10): 899–906.

    Article  Google Scholar 

  19. REYNOLDS J A, TANFORD C. The gross conformation of protein-sodium dodecyl sulfate complexes [J]. The Journal of Biological Chemistry, 1970, 245(19): 5161–5165.

    Google Scholar 

  20. WU Qiang, ZHANG Bao-yong. The effect of THF-SDS on separation of methane-hydrate from mine gas [J]. Journal of China University of Mining & Technology, 2010, 39(4): 484–489. (in Chinese)

    Google Scholar 

  21. LEO A, HANSCH C, ELKINS D. Partition coefficients and their uses [J]. Chem Rev, 1971, 71(6): 525–616.

    Article  Google Scholar 

  22. LINGA P, KUMAR R, ENGLEZOS P. The clathrate hydrate process for post and pre-combustion capture of carbon dioxide [J]. Journal of Hazardous Materials, 2007, 149(3): 625–629.

    Article  Google Scholar 

  23. LI Xiao-sen, XU Cun-gang, CHEN Zhao-yang, WU Hui-jie. Hydrate-based pre-combustion carbon dioxide capture process in the system with tetra-n-butyl ammonium bromide solution in the presence of cyclopentane [J]. Energy, 2011, 36(3): 1394–1403.

    Article  Google Scholar 

  24. LEE B I, KESLER M G. Generalized thermodynamic correlation based on three-parameter corresponding states [J]. AIChE Journal, 1975, 21(3): 510–527.

    Article  Google Scholar 

  25. ELLIOTT J R, LIRA C T. Introductory chemical engineering thermodynamics. [M]. 2nd Edition. New York: Prentice Hall, 2012: 60–62.

    Google Scholar 

  26. VYSNIAUSKAS A, BISHNOI P R. A kinetic study of methane hydrate formation [J]. Chem Eng Sci, 1983, 38(7): 1061–1072.

    Article  Google Scholar 

  27. VYSNIAUSKAS A, BISHNOI P R. Kinetics of ethane hydrate formation [J]. Chem Eng Sci, 1985, 40(2): 299–303.

    Article  Google Scholar 

  28. LI Li, XU Hai-liang, YANG Fang-qiong. Three-phase flow of submarine gas hydrate pipe transport [J]. Journal of Central South University. 2015, 22: 3650–3656.

    Article  Google Scholar 

  29. MILLER F P, VANDOME A F, MCBREWSTER J. Montmorillonite [M]. Beau Bassin: Alphascript Publishing, 2010: 10–16.

    Google Scholar 

  30. GUO Yu-ting, DONG Fa-qin, LIU Ming-xue, QIN Yong-lian, ZHOU Qing, WU Chuan-long, ONG Mei-rong, HUANG Ting, LIU Yuan-yuan. Adsorption characteristics and mechanism of glycine on montmorillonite in aqueous solutions [J]. Journal of Central South University (Science and Technology), 2016, 47(4): 1092–1099. (in Chinese)

    Google Scholar 

  31. GAYET P, DICHARRY C, MARION G, GRACIAA A, LACHAISE J, NESTEROV A. Modeling heating curve for gas hydrate dissociation in porous media [J]. Chemical Engineering Science, 2005, 60(21): 5751–5758.

    Article  Google Scholar 

  32. KARAASLAN U, PARLAKTUNA M. Effect of surfactants on hydrate formation rate [J]. Annals of the New York Academy of Sciences, 2000, 912(1): 735–743.

    Article  Google Scholar 

  33. BAHRI Z, REZAI B, KOWSARI E. Selective separation of gallium from aluminum in SDS–Ga–Al and SDS–Ga–Al–fluoride systems by ion flotation [J]. Journal of Central South University, 2017, 24(04): 789–795.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Zhang  (张辉).

Additional information

Foundation item: Projects(51404102, 51334005, 51274267) supported by the National Natural Science Foundation of China; Project(UNPYSCT-2017140) supported by the Youth Innovation Personnel Training in University and College of Heilongjiang Province, China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Q., Wu, Q., Zhang, H. et al. Effect of montmorillonite on hydrate-based methane separation from mine gas. J. Cent. South Univ. 25, 38–50 (2018). https://doi.org/10.1007/s11771-018-3715-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-018-3715-x

Key words

关键词

Navigation