Skip to main content
Log in

Stochastic noise identification in a stray current sensor

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

The Allan variance analysis method is used to identify the stochastic noise in the stray current sensor. The stray current characteristic is firstly introduced. Then the optical configuration and the signal processing method of the stray current sensor are illustrated. Moreover, the cause of the stochastic noise in the stray current sensor is analyzed. The calculation method of the stochastic noise coefficient is presented in detail. And the feasibility of the stochastic noise identification with the Allan variance analysis method is evaluated. Furthermore, the zero-drift signal acquisition experiment is conducted to identify the stochastic noise in the stray current sensor. According to the experimental result, the bias instability noise, the quantization noise and the white noise are identified as the major stochastic noise. Finally, the experiment on the direct-current signal acquisitions is conducted, whose results indicate that the signal drift of the measured direct-current is mainly caused by the major stochastic noise. And the suppression methods of the major stochastic noise are proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. YU J, ZHANG C X, LI C S, WANG X X, LI Y, FENG X J. Influence of polarization-dependent crosstalk on scale factor in the in-line Sagnac interferometer current sensor [J]. Optical Engineering, 2013, 52(11): 722–730.

    Article  Google Scholar 

  2. OH M C, CHU W S, KIM K J, KIM J W. Polymer waveguide integrated-optic current transducers [J]. Optics Express, 2011, 19(10): 9392–9400.

    Article  Google Scholar 

  3. ZHANG H, QIU Y S, HUANG Z T, JIANG J Z, LI G M, CHEN H X, LI H. Temperature and vibration robustness of reflecting all-fiber current sensor using common single-mode fiber [J]. Journal of Lightwave Technology, 2014, 32(22): 3709–3715.

    Article  Google Scholar 

  4. XU S Y, LI W, XING F F, WANG Y Q. Polarimetric current sensor based on polarization division multiplexing detection [J]. Optics Express, 2014, 22(10): 11985–11994.

    Article  Google Scholar 

  5. HUANG D, SRINIVASAN S, BOWERS J E. Compact Tb doped fiber optic current sensor with high sensitivity [J]. Optics Express, 2015, 23(33): 29993–29999.

    Article  Google Scholar 

  6. ZHANG H Y, DONG Y K, LEESON J, CHEN L, BAO X Y. High sensitivity optical fiber current sensor based on polarization diversity and a Faraday rotation mirror cavity [J]. Applied Optics, 2013, 50(6): 924–929.

    Article  Google Scholar 

  7. XU S Y, LI W, WANG Y Q, XING F F. Stray current sensor with cylindrical twisted fiber [J]. Applied Optics, 2014, 53(24): 5486–5492.

    Article  Google Scholar 

  8. ZHANG C X, LI C S, WANG X X, LI L J, YU J, FENG X J. Design principle for sensing coil of fiber-optic current sensor based on geometric rotation effect [J]. Applied Optics, 2011, 51(18): 3977–3988.

    Article  Google Scholar 

  9. ZHOU S, ZHANG X. Simulation of linear birefringence reduction in fiber-optical current sensor [J]. IEEE Photonics Technology Letters, 2007, 19(17): 1568–1570.

    Article  Google Scholar 

  10. BOHNERT K, GABUS P, NEHRING J, BRANDLE H. Temperature and vibration insensitive fiber-optic current sensor [J]. Journal of Lightwave Technology, 2002, 20(2): 267–276.

    Article  Google Scholar 

  11. SHORT S X, ARRUDA De J U, TSELIKOV A A, BLAKE J N. Elimination of birefringence induced scale factor errors in the in-line Sagnac interferometer current sensor [J]. Journal of Lightwave Technology, 1998, 16(10): 1844–1850.

    Article  Google Scholar 

  12. XU S Y, LI W, WANG Y Q, XING F F. Effect and elimination of alignment error in an optical fiber current sensor [J]. Optics Letters, 2014, 39(16): 4751–4754.

    Article  Google Scholar 

  13. BOHNERT K, BRANDLE H, BRUNZEL M G, GABUS P, GUGGENBACH P. Highly accurate fiber-optic DC current sensor for the electrowinning industry [J]. IEEE Transactions on Industry Applications, 2007, 43(1): 180–187.

    Article  Google Scholar 

  14. SHEN T, FENG Y, SUN B C, WEI X L. Magnetic field sensor using the fiber loop ring-down technique and an etched fiber coated with magnetic fluid [J]. Applied Optics, 2016, 55(4): 673–678.

    Article  Google Scholar 

  15. LI J T, FANG J C. Sliding average Allan variance for inertial sensor stochastic error analysis [J]. IEEE Transactions on Instrumentation and Measurement, 2013, 62(12): 3291–3300.

    Article  Google Scholar 

  16. CZERWINSKI F, RICHARDSON A C, ODDERSHEDE L B. Quantifying noise in optical tweezers by Allan variance [J]. Optics Express, 2009, 17(15): 13255–13269.

    Article  Google Scholar 

  17. XU S Y, LI W, XING F F, WANG Y Q. Novel predictive model for metallic structure corrosion status in presence of stray current in DC mass transit systems [J]. Journal of Central South University, 2014, 21(3): 956–962.

    Article  Google Scholar 

  18. XU S Y, LI W, WANG Y Q. Effects of vehicle running mode on rail potential and stray current in DC mass transit systems [J]. IEEE Transactions on Vehicular Technology, 2013, 62(8): 3569–3580.

    Article  Google Scholar 

  19. XU S Y, LI W. Research on stray current corrosion evaluation of buried metallic pipeline in an urban rail transit system [J]. International Journal of Electrochemical Science, 2015, 10(7): 5950–5960.

    Google Scholar 

  20. DAROWICKI K, ZAKOWSKI K. A new time-frequency detection method of stray current field interference on metal structures [J]. Corrosion Science, 2004, 46(5): 1061–1070.

    Article  Google Scholar 

  21. LV H F, ZHANG L, WANG D J, WU J. An optimization iterative algorithm based on nonnegative constraint with application to Allan variance analysis technique [J]. Advances in Space Research, 2014, 53(5): 836–844.

    Article  Google Scholar 

  22. NIU X J, CHEN Q J, ZHANG Q, ZHANG H P, NIU J M, CHEN K J, SHI C, LIU J N. Using Allan variance to analyze the error characteristics of GNSS positioning [J]. GPS Solutions, 2014, 18(2): 231–242.

    Article  Google Scholar 

  23. LI J T, FANG J C. Not fully overlapping Allan variance and total variance for inertial sensor stochastic error analysis [J]. IEEE Transactions on Instrumentation and Measurement, 2013, 62(10): 2659–2672.

    Article  Google Scholar 

  24. DRAGANOVA K, KMEC F, BLAZEK J, PRASLICKA D, HUDAK J, LASSAK M. Noise analysis of magnetic sensors using Allan variance [J]. Acta Physica Polonica A, 2014, 126(1): 394–395.

    Article  Google Scholar 

  25. EI-SHEIMY N, HOU H Y, NIU X J. Analysis and modeling of inertial sensors using Allan variance [J]. IEEE Transactions on Instrumentation and Measurement, 2008, 57(1): 140–149.

    Article  Google Scholar 

  26. ZHANG Q, WANG L, GAO P Y, LIU Z J. An innovative wavelet threshold denoising method for environmental drift of fiber optic gyro [J]. Mathematical Problems in Engineering, 2016, ID: 9017481.

    Google Scholar 

  27. RABELO R C, CARVALHO De R T, BLAKE J. SNR enhancement of intensity noise-Limited FOGs [J]. Journal of Lightwave Technology, 2000, 18(12): 2146–2150.

    Article  Google Scholar 

  28. TENG F, JIN J, ZHANG Z C, DU S S, SONG N F, ZHANG C X. Noise decomposition and parameter optimization method for high sensitivity fiber optic gyroscope [J]. Science China Technological Sciences, 2015, 58(6): 1118–1124.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shao-yi Xu  (许少毅).

Additional information

Foundation item: Project(2017QNA13) supported by Fundamental Research Funds for the Central Universities, China; Project(PAPD) supported by Priority Academic Program Development of Jiangsu Higher Education Institutions, China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Sy., Xing, Ff., Li, W. et al. Stochastic noise identification in a stray current sensor. J. Cent. South Univ. 24, 2596–2604 (2017). https://doi.org/10.1007/s11771-017-3673-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-017-3673-8

Keywords

Navigation