Skip to main content
Log in

Current-tunable current-mode RMS detector

  • Original Paper
  • Published:
Electrical Engineering Aims and scope Submit manuscript

Abstract

A new realization of root mean square (RMS) detector comprising two controlled current conveyors, metal-oxide-semiconductor transistors and a single grounded capacitor is presented in this paper, without any external resistors and components matching requirements added. The proposed circuit can be used for measuring the RMS value of periodic, band-limited signals. Inherently, the circuit is well suited for IC implementation. The errors related to signal processing and errors bound were investigated and provided. To verify the theoretical analysis, the circuit PSpice simulations have also been included, showing good agreement with the theory. The maximum power consumption of the converter is \(\sim \)4.28 mW, at \(\pm \)1.25 V supply voltages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Northrop RB (1990) Analog electronics circuits. Addison-Wesley, Reading

    Google Scholar 

  2. Heavey P, Whitney C (2004) RMS measuring principles in the application of protective relaying and metering. In: Proceedings of the 57th annual conference protective relay engineering, pp 469–489

  3. Pogliana U (1997) Precision measurement of AC voltage below 20 Hz at IEN. IEEE Trans Instrum Meas 46(2):369–372

    Article  Google Scholar 

  4. Germer H (2001) High-precision AC measurements using the Monte-Carlo method. IEEE Trans Instrum Meas 50(2):457–460

    Article  Google Scholar 

  5. Yoon W-K, Deveney MJ (1998) Power measurement using the wavelet transform. IEEE Trans Instrum Meas 47(5):1205–1210

    Article  Google Scholar 

  6. Novotny M, Sedlacek M (2008) RMS value measurement based on classical and modified digital signal processing algorithms. Measurement 41(3):236–250

    Article  Google Scholar 

  7. True RMS detector (2002) National semiconductor application note AN008474

  8. DSCA33 ISOLATED True RMS Input Module (2011) AN101 Dataforth Corporation, USA

  9. Frey DR (2004) Exact analysis of implicit RMS converters. Electron. Lett. 40(5):283–284

    Article  Google Scholar 

  10. Abulma’atti MT (2009) Improved analysis of implicit RMS detectors. IEEE Trans Instrum Meas 58(3):502–505

    Article  Google Scholar 

  11. High Precision, Wide-Band RMS-to-DC Converter (2011) Analog devices application note AD637

  12. Precision Wide Bandwidth, RMS-to-DC Converter (2004) Linear technology application note LTC1968

  13. Mulder J, Serdijn WA, Woerd AC, Roermund AHM (1996) Dynamic translinear RMS-DC converter. Electron Lett 32:2067–2068

    Article  Google Scholar 

  14. Mulder J, Serdijn WA, Roermund AHM (1997) An RMS-DC converter base don the dynamic translinear principle. IEEE Solid-State Circuits 32:1146–1150

    Article  Google Scholar 

  15. Surakampontron W, Kumwachara K (1999) A dual translinear-based RMS-to-DC converter. IEEE Trans Instrum Meas 47:456–464

    Google Scholar 

  16. Wasseneaar RF, Seevinck E, van Leeuwen MG, Speelman CJ, Holle E (1998) New techniques for high-frequency RMS-to-DC conversion based on a multifunctional V-to-I convertor. IEEE J Solid State Circuits 23(3):802–815

  17. Milanović V, Gaitan M, Bowen ED, Tea NH, Zaghlou ME (1997) Thermoelectric power sensors for microwave applications by commercial CMOS fabrication. IEEE Electron Device Lett 18(9):450–452

    Article  Google Scholar 

  18. Sedra AS, Smith KC (1970) A second-generation current conveyor and its applications. IEEE Trans Circuit Theory CT–17(1):132–134

    Article  Google Scholar 

  19. Yuce E, Minaei S, Tokat S (2007) Root-mean-square measurement of distinct voltage signals. IEEE Trans Instrum Meas 56(6):2782–2787

    Article  Google Scholar 

  20. Fabre A, Saaid O, Wiest F, Boucheron C (1995) Current controllable bandpass filter based on translinear conveyors. Electron Lett 31:1727–1728

    Article  Google Scholar 

  21. Pal K (1989) Modified current conveyors and their applications. Microelectron J 20:37–40

    Article  Google Scholar 

  22. Soliman AM (1998) Modified current conveyor filters: classification and review. Microelectron J 29:133–149

    Article  Google Scholar 

  23. Tangsrirat W, Surakampontorn W (2007) High output impendance current-mode universal filter employing dual-output current-controlled conveyors and grounded capacitors. AEU-Int J Electron Commun 61:127–131

    Article  Google Scholar 

  24. Fabre A, Saaid O, Barthelemy H (1995) On the frequency limitations of the circuits based on the second generation current conveyors. Analog Integr Circuits Signal Process 7(2):113–129

    Article  Google Scholar 

  25. Petrovic P, Zupunski I (2013) RMS detector of periodic, band-limited signals based on usage of DO-CCIIs. Measurement 46(9):3073–3083

    Article  Google Scholar 

  26. Petrović P (2012) Root-mean-square measurement of periodic, band-limited signals. In: Proceedings of IEEE international conference on instrumentation and measurement technology (I2MTC), pp 323–327

  27. Maneatis JG (1996) Low-jitter process-independent DLL and PLL based on self-biased techniques. IEEE J Solid State Circuits 31(11):1723–1732

    Article  Google Scholar 

  28. Ingels M (1999) A 1-Gb/s, 0.7-\(\mu \)m CMOS optical receiver with full rail-to-rail output swing. IEEE J Soid. State Circuits 34(7):971–977

  29. Grewing C, Winterberg K, Waasen S, Friedrich M, Puma GL, Wiesbauer A, Sandner C (2004) Fully integrated distributed power amplifier in CMOS technology, optimized for UWB transmitters. In: Proceedings of the radio frequency integrated circuits symposium, pp 87–90

  30. Petrovic P, Stevanovic M (2006) Measuring of active power of synchronously sampled AC signals in presence of interharmnoics and subharmonics. IEE Proc Electr Power Appl 153(2):227–235

    Article  Google Scholar 

  31. Zhang T, Eisenstadt WR, Fox RM, Yin Q (2006) Bipolar RMS power detectors. IEEE J Solid State Circuits 41(9):2188–2192

  32. Rumberg B, Graham DW (2012) A low-power magnitude detector for analysis of transient-rich signals. IEEE J Solid State Circuits 47(3):676–685

    Article  Google Scholar 

  33. Abdul-Karim MAH, Taha SMR, Omran SS (1987) Microprocessor-based implicit RMS meter. Int J Electron 62(6):953–959

    Article  Google Scholar 

  34. Minaei S, Sayin OK, Kuntman H (2006) A new CMOS electronically tuneable current conveyor and its application to current-mode filters. IEEE Trans Circuits Syst I 53(7):1448–1457

    Article  Google Scholar 

  35. GUM-Guide to the Expression of Uncertainty in Measurement (1993) ISO-1993

  36. Prommee P, Angkeaw K, Somdunyakanok M, Dejhan K (2009) CMOS-based near zero-offset multiple inputs max-min circuits and its applications. Analog Integr Circuits Signal Process 61:93–105

    Article  Google Scholar 

  37. Achigui HJ, Fayomi C, Massicotte D, Boukadoum M (2011) Low-voltage, high-speed CMOS analog latched voltage comparator using the “flipped voltage follower” as input stage. Microelectron J 42:785–789

    Article  Google Scholar 

  38. Precision CMOS analog switches (1994) MAXIM, data sheet

  39. Single positive-edge-triggered D-type flip-flop SN74LVC1G80 (2007) Texsas Instruments, data sheet

  40. Annema AJ, Goksun GA (2012) 0.0025mm2 bandgap voltage reference for 1.1 V supply in standard 0.16 \(\mu \)m CMOS. In: Proceedings of 2012 IEEE international solid-state circuits conference, pp 364–366

  41. Prommee P, Angkeaw K, Somdunyakanok M, Dejhan K (2009) CMOS-based near zero-offset multiple inputs max-min circuits and its applications. Analog Integr Circuits Signal Process 61:93–105

    Article  Google Scholar 

  42. Banba H, Shiga H, Umezawa A, Miyaba T, Tanzawa T, Atsumi S, Sakui K (1999) A CMOS bandgap reference circuit with sub-1V operation. IEEE J Solid State Circuits 34(5):670–674

    Article  Google Scholar 

  43. Kaewdang K, Kumwachara K, Surakampontorn W (2009) A translinear-based true RMS-to-DC converter using only npn BJTs. AEU-Int J Electron Commun 63(6):472–477

    Article  Google Scholar 

  44. Yhang T, Eisenstadt WR, Fox RM, Yin Q (2006) Bipolar RMS power detectors. IEEE J Solid State Circuits 41(9):2188–2192

    Article  Google Scholar 

  45. Spencer RR (1991) Analog implementation of artificial neural networks. Proc IEEE Int Symp Circuits Syst 2:1271–1274

    Google Scholar 

Download references

Acknowledgments

The author wishes to thank to the Ministry of Education and Science of the Republic of Serbia for its support of this work provided within the projects 42009 and OI-172057.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Predrag B. Petrović.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petrović, P.B. Current-tunable current-mode RMS detector. Electr Eng 97, 65–74 (2015). https://doi.org/10.1007/s00202-014-0313-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00202-014-0313-2

Keywords

Navigation