Skip to main content
Log in

A novel LS-SVM control for unknown nonlinear systems with application to complex forging process

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

A novel LS-SVM control method is proposed for general unknown nonlinear systems. A linear kernel LS-SVM model is firstly developed for input/output (I/O) approximation. The LS-SVM control law is then derived directly from this developed model without any approximation and assumption. It further proves that the control error is fully equal to the LS-SVM modeling error. This means that a desirable control performance can be achieved because the LS-SVM has been proven to have an outstanding modeling ability in the previous studies. Case studies finally demonstrate the effectiveness of the proposed LS-SVM control approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. CHO S J, LEE J C, JEON Y H, JEON J W. The development of a position conversion controller for hydraulic press systems [C]//Proc IEEE Int Conf Robot Biomimetics, 2009: 2019–2022.

    Google Scholar 

  2. ZHOU Y C, LIU S J, LIU Z W, HUANG M H. Hydraulic position holding system of a huge water press based on iterative learning control [J]. Mechanical Science and Technology for Aerospace Engineering, 2008, 27(9): 1130–1133.

    Google Scholar 

  3. GAO C, JIAN L, LUO S. Modeling of the thermal state change of blast furnace hearth with support vector machines [J]. IEEE Tran on Industrial Electronics, 2012, 59(2): 1134–1145.

    Article  Google Scholar 

  4. EBRAHIMI B M, JAVAN R M, FAIZ J, KHATAMI S V. Advanced eccentricity fault recognition in permanent magnet synchronous motors using stator current signature analysis [J]. IEEE Tran on Industrial Electronics, 2014, 61(4): 2041–2052.

    Article  Google Scholar 

  5. QI C K, LI H X, ZHANG X X, ZHAO X, LI SY, GAO F. Time/Space-separation-based SVM modeling for nonlinear distributed parameter processes [J]. Ind Eng Chem Res, 2011, 50: 332–341.

    Article  Google Scholar 

  6. HE K, LI X. A quantitative estimation technique for welding quality using local mean decomposition and support vector machine [J]. Journal of Intelligent Manufacturing, 2016, 27(3): 525–533.

    Article  MathSciNet  Google Scholar 

  7. KAO L J, LEE T S, LU C J. A multi-stage control chart pattern recognition scheme based on independent component analysis and support vector machine [J]. Journal of Intelligent Manufacturing, 2016, 27(3): 653–664.

    Article  Google Scholar 

  8. ÇAYDAS U, EKICI S. Support vector machines models for surface roughness prediction in CNC turning of AISI 304 austenitic stainless steel [J]. Journal of Intelligent Manufacturing, 2012, 23(3): 639–650.

    Article  Google Scholar 

  9. BENKEDJOUH T, MEDJAHER K, ZERHOUNI N, RECHAK S. Health assessment and life prediction of cutting tools based on support vector regression [J]. Journal of Intelligent Manufacturing, 2015, 26(2): 213–223.

    Article  Google Scholar 

  10. ZHOU L, LAI K K, YU L. Least squares support vector machines ensemble models for credit scoring [J]. Expert Systems with Applications, 2010, 37(1): 127–133.

    Article  Google Scholar 

  11. KIM W, PARK J, YOO J, KIM H J, PARK C G. Target localization using ensemble support vector regression in wireless sensor networks [J]. IEEE Transactions on Cybernetics, 2013, 43(4): 1189–1198.

    Article  Google Scholar 

  12. JIAN L, XIA Z, LIANG X, GAO C. Design of a multiple kernel learning algorithm for LS-SVM by convex programming [J]. Neural Networks, 2011, 24(5): 476–483.

    Article  MATH  Google Scholar 

  13. QI G J, TI Q, HUANG T. Locality-sensitive support vector machine by exploring local correlation and global regularization [C]//IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Boston, USA: IEEE, 2011: 841–848.

    Google Scholar 

  14. QIU S, LANE T. A framework for multiple kernel support vector regression and its applications to siRNA efficacy prediction [J]. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2009, 6(2): 190–199.

    Article  Google Scholar 

  15. ZHANG G, LI H X, GAN M. Design a wind speed prediction model using probabilistic fuzzy system [J]. IEEE Trans on Industrial Informatics, 2012, 8(4): 819–827.

    Article  Google Scholar 

  16. LIU Z, LI H X, ZHANG Y. A probabilistic wavelet system for stochastic and incomplete data-based modeling [J]. IEEE Trans Systems Man and Cybernetics Part B, 2008, 38(2): 310–319.

    Article  Google Scholar 

  17. SUYKENS J A, BRABANTER J, LUKAS L, VANDEWALLE J. Weighted least squares support vector machines: Robustness and sparse approximation [J]. Neurocomputing, 2002, 48: 85–105.

    Article  MATH  Google Scholar 

  18. VALYON J, HORVATH G. A robust LS-SVM regression [J]. International Journal of Computational Intelligence, 2006, 3(3): 243–248.

    Google Scholar 

  19. WEN W, HAO Z F, YANG X W. A heuristic weight-setting strategy and iteratively updating algorithm for weighted least-squares support vector regression [J]. Neurocomputing, 2008, 71(16–18): 3096–3103.

    Article  Google Scholar 

  20. WONG P K, XU Q, VONG C M, WONG H C. Rate-Dependent hysteresis modeling and control of a piezostage using online support vector machine and relevance vector machine [J]. IEEE Tran on Industrial Electronics, 2012, 59(4): 1988–2001.

    Article  Google Scholar 

  21. DE BRABANTER K, DE BRABANTER J, SUYKENS J A, de MOOR B. Approximate confidence and prediction intervals for least squares support vector regression [J]. IEEE Trans on Neural Networks, 2011, 22(1): 110–120.

    Article  MATH  Google Scholar 

  22. LI H X, YANG J L, ZHANG G, FAN B. Probabilistic support vector machines for classification of noise affected data [J]. Information Sciences, 2013, 221: 60–71.

    Article  Google Scholar 

  23. YANG J L, LI H X, YONG H. A probabilistic SVM based decision system for pain diagnosis [J]. Expert Systems with Applications, 2011, 38(8): 9346–9351.

    Article  Google Scholar 

  24. WANG Z, ZHANG Z, MAO J. Adaptive tracking control based on online LS-SVM identifier [J]. International Journal of Fuzzy Systems, 2012, 14(2): 330–336

    MathSciNet  Google Scholar 

  25. YUAN X, WANG Y. LS-SVM modeling based inverse controller with uncertainty compensation [J]. Journal of Dynamic Systems Measurement and Control, 2007, 129: 845–850.

    Article  Google Scholar 

  26. DENG H, LI H X. A novel neural approximate inverse control for unknown nonlinear discrete dynamic systems [J]. IEEE Trans on Systems Man, and Cybernetics Part B: Cybernetics, 2005, 35(1): 115–123.

    Article  Google Scholar 

  27. LI H X, DENG H. An approximate internal model based neural control for unknown nonlinear discrete processes [J]. IEEE Trans on Neural Networks, 2006, 17(3): 659–670.

    Article  Google Scholar 

  28. XI X C, POO A N, CHOU S K. Support vector regression model predictive control on a HVAC plant [J]. Control Engineering Practice, 2007, 15: 897–908.

    Article  Google Scholar 

  29. SUYKENS J A, VANDEWALLE J, MOOR B D. Optimal control by least squares support vector machines [J]. Neural Networks, 2001, 14(1): 23–25.

    Article  Google Scholar 

  30. SUYKENS J A, GESTEL T V, BRABANTER J D, MOOR B D, VANDEWALLE J. Least squares support vector machines [M]. Singapore: World Scientific, 2002: 236–251.

    Book  MATH  Google Scholar 

  31. WANG H, PI D, SUN Y. Online SVM regression algorithm based adaptive inverse control [J]. Neurocomputing, 2007, 7: 52–59.

    Google Scholar 

  32. SPOOER J T, MAGGIORE M, ORDONEZ R, PASSION K M. Stable adaptive control and estimation for nonlinear systems [M]. New York: Wiley, 2002: 69–76.

    Book  Google Scholar 

  33. LU X J, HUANG M H. A novel multi-level modeling method for complex forging processes on hydraulic press machines [J]. International Journal of Advanced Manufacturing Technology, 2015, 79(9): 1869–880.

    Article  Google Scholar 

  34. LU X J, HUANG M H. A simple online modeling approach for a time-varying forging process [J]. International Journal of Advanced Manufacturing Technology, 2014, 75: 1197–1205.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin-jiang Lu  (陆新江).

Additional information

Foundation item: Project(51205420) supported by the National Natural Science Foundation of China; Project(NCET-13-0593) supported by the Program for New Century Excellent Talents in University, China; Project(14C0208) supported by the Research Foundation of Education Bureau of Hunan Province, China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, B., Lu, Xj. & Huang, Mh. A novel LS-SVM control for unknown nonlinear systems with application to complex forging process. J. Cent. South Univ. 24, 2524–2531 (2017). https://doi.org/10.1007/s11771-017-3665-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-017-3665-8

Keywords

Navigation