Skip to main content
Log in

Performance analysis and design of MIMO-OFDM system using concatenated forward error correction codes

  • Published:
Journal of Central South University Aims and scope Submit manuscript

An Erratum to this article was published on 01 August 2017

This article has been updated

Abstract

This work investigates the performance of various forward error correction codes, by which the MIMO-OFDM system is deployed. To ensure fair investigation, the performance of four modulations, namely, binary phase shift keying (BPSK), quadrature phase shift keying (QPSK), quadrature amplitude modulation (QAM)-16 and QAM-64 with four error correction codes (convolutional code (CC), Reed-Solomon code (RSC)+CC, low density parity check (LDPC)+CC, Turbo+CC) is studied under three channel models (additive white Guassian noise (AWGN), Rayleigh, Rician) and three different antenna configurations(2×2, 2×4, 4×4). The bit error rate (BER) and the peak signal to noise ratio (PSNR) are taken as the measures of performance. The binary data and the color image data are transmitted and the graphs are plotted for various modulations with different channels and error correction codes. Analysis on the performance measures confirm that the Turbo + CC code in 4×4 configurations exhibits better performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

  • 17 September 2017

    Figures 14–25 in the original version of the article are incorrect and they should be replaced as follows: Fig. 14 PSNR analysis of MIMO-OFDM system with BPSK modulation and FEC schemes in AWGN environment: (a) Only convolutional coding, CC; (b) LDPC concatenated with convolutional coding, LDPC+CC; (c) RSC concatenated with convolutional coding, RSC+CC; (d) Turbo codes concatenated with convolutional coding Fig. 15 PSNR analysis of MIMO-OFDM system with QPSK modulation and FEC schemes in AWGN environment: (a) Only convolutional coding, CC; (b) LDPC concatenated with convolutional coding, LDPC+CC; (c) RSC concatenated with convolutional coding, RSC+CC; (d) Turbo codes concatenated with convolutional coding Fig. 16 PSNR analysis of MIMO-OFDM system with QAM-16 modulation and FEC schemes in AWGN environment: (a) Only convolutional coding, CC; (b) LDPC concatenated with convolutional coding, LDPC+CC; (c) RSC concatenated with convolutional coding, RSC+CC; (d) Turbo codes concatenated with convolutional coding Fig. 17 PSNR analysis of MIMO-OFDM system with QAM-64 modulation and FEC schemes in AWGN environment: (a) Only convolutional coding, CC; (b) LDPC concatenated with convolutional coding, LDPC+CC; (c) RSC concatenated with convolutional coding, RSC+CC; (d) Turbo codes concatenated with convolutional coding Fig. 18 PSNR analysis of MIMO-OFDM system with BPSK modulation and FEC schemes in Rayleigh environment: (a) Only convolutional coding, CC; (b) LDPC concatenated with convolutional coding, LDPC+CC; (c) RSC concatenated with convolutional coding, RSC+CC; (d) Turbo codes concatenated with convolutional coding Fig. 19 PSNR analysis of MIMO-OFDM system with QPSK modulation and FEC schemes in Rayleigh environment: (a) Only convolutional coding, CC; (b) LDPC concatenated with convolutional coding, LDPC+CC; (c) RSC concatenated with convolutional coding, RSC+CC; (d) Turbo codes concatenated with convolutional coding Fig. 20 PSNR analysis of MIMO-OFDM system with QAM-16 modulation and FEC schemes in Rayleigh environment: (a) Only convolutional coding, CC; (b) LDPC concatenated with convolutional coding, LDPC+CC; (c) RSC concatenated with convolutional coding, RSC+CC; (d) Turbo codes concatenated with convolutional coding Fig. 21 PSNR analysis of MIMO-OFDM system with QAM-64 modulation and FEC schemes in Rayleigh environment: (a) Only convolutional coding, CC; (b) LDPC concatenated with convolutional coding, LDPC+CC; (c) RSC concatenated with convolutional coding, RSC+CC; (d) Turbo codes concatenated with convolutional coding Fig. 22 PSNR analysis of MIMO-OFDM system with BPSK modulation and FEC schemes in Rician environment: (a) Only convolutional coding, CC; (b) LDPC concatenated with convolutional coding, LDPC+CC; (c) RSC concatenated with convolutional coding, RSC+CC; (d) Turbo codes concatenated with convolutional coding Fig. 23 PSNR analysis of MIMO-OFDM system with QPSK modulation and FEC schemes in Rician environment: (a) Only convolutional coding, CC; (b) LDPC concatenated with convolutional coding, LDPC+CC; (c) RSC concatenated with convolutional coding, RSC+CC; (d) Turbo codes concatenated with convolutional coding Fig. 24 PSNR analysis of MIMO-OFDM system with QAM-16 modulation and FEC schemes in Rician environment: (a) Only convolutional coding, CC; (b) LDPC concatenated with convolutional coding, LDPC+CC; (c) RSC concatenated with convolutional coding, RSC+CC; (d) Turbo codes concatenated with convolutional coding Fig. 25 PSNR analysis of MIMO-OFDM system with QAM-64 modulation and FEC schemes in Rician environment: (a) Only convolutional coding, CC; (b) LDPC concatenated with convolutional coding, LDPC+CC; (c) RSC concatenated with convolutional coding, RSC+CC; (d) Turbo codes concatenated with convolutional coding

References

  1. LIU T H. Analysis of the Alamouti STBC MIMO system with spatial division multiplexing over the Rayleigh fading channel [J]. IEEE Trans on Wirele Commun, 2015, 14: 5156–5170.

    Article  Google Scholar 

  2. LI G, ZHAI H, LI L, LIANG C, YU R, LIU S. AMC-loaded wideband base station antenna for indoor access point in MIMO system [J]. IEEE Transactions on Antennas and Propagation, 2015, 63: 525–533.

    Article  Google Scholar 

  3. SUN S, CHEN C W, CHU S W, CHEN H H, MENG W. Multiuser-interference-free space–time spreading MIMO systems based on three-dimensional complementary codes [J]. IEEE Systems Journal, 2015, 9: 45–57.

    Article  Google Scholar 

  4. RUPP M, MEKLENBRAUKER C F. On extended Alamouti schemes for space-time coding [C]// Proc the 5th Int Symp Wireless Personal Multimedia Commun. IEEE, 2002: 115–119.

    Chapter  Google Scholar 

  5. SAYED A, YOUNIS W, TARIGHAT A. An invariant matrix structure in multiantenna communications [J]. IEEE Signal Processing Letters, 2005, 12: 749–752.

    Article  Google Scholar 

  6. ZHANG H, WANG Z, YU J, HUANG J. A compact MIMO antenna for wireless communication [J]. IEEE Antennas & Propagation Magazine, 2008, 50: 104–107.

    Article  Google Scholar 

  7. KIM J, JU J, EOM S, SONG M, KIM N. Four-channel MIMO antenna for WLAN using hybrid structure [J]. Electron Lett, 2013, 49: 857–858.

    Article  Google Scholar 

  8. LI H, XIONG J, HE S. A compact planar MIMO antenna system of four elements with similar radiation characteristics and isolation structure [J]. IEEE Antennas Wireless Propag, 2009, 8: 1107–1110.

    Article  Google Scholar 

  9. LIU L, CHEUNG S W, YUK T I. Compact MIMO antenna for portable devices in UWB applications [J]. IEEE Transactions on Antennas Propag, 2013, 61: 4257–4264.

    Article  Google Scholar 

  10. VUCETIC B, YUAN J. Space–time coding [M]. 1st ed. Hoboken, NJ, USA: Wiley, 2003.

    Google Scholar 

  11. CHEN D, XIA X G, JIANG T, GAO X-q. Properties and power spectral densities of CP based OQAM-OFDM systems [J]. IEEE Transactions on Signal Processing, 2015, 63: 3561–3575.

    Article  MathSciNet  Google Scholar 

  12. WANG S H, LI C P, LEE K C, SU H J. A novel low-complexity precoded OFDM system with reduced PAPR [J]. IEEE Transactions on Signal Processing, 2015, 63: 1366–1376.

    Article  MathSciNet  Google Scholar 

  13. ALVES T, MORANT M, CARTAXO A, LLORENTE R. Transmission of OFDM wired-wireless quintuple-play services along WDM LR-PONs using centralized broad band impairment compensation [J]. Opt Express, 2012, 20: 13748–13761.

    Article  Google Scholar 

  14. TANG J, LANE P, SHORE K. 30 Gbit/s transmission over 40 km directly modulated DFB laser-based SMF links without optical amplification and dispersion compensation for VSR and metro applications [C]// Optical Fibre Communication Conference. Anaheim, California, 2006.

    Google Scholar 

  15. DJORDJEVIC, VASIC B. Orthogonal frequency division multiplexing for high-speed optical transmission [J]. Opt Express, 2006, 14: 3767–3775.

    Article  Google Scholar 

  16. BINGHAM J A C. Multicarrier modulation for data transmission: An idea whose time has come [J]. IEEE Comm Mag, 1990, 28: 5–14.

    Article  Google Scholar 

  17. CHANG R W. Synthesis of band-limited orthogonal signals for multichannel data transmission [J]. The Bell System Technical Journal, 1966, 45: 1775–1796.

    Article  Google Scholar 

  18. SALTZBERG B R. Performance of an efficient parallel data transmission system [J]. IEEE Transactions on Comm Tech, 1967, 15: 805–811.

    Article  Google Scholar 

  19. HIROSAKI B. An orthogonally multiplexed QAM system using the discrete fourier transform [J]. IEEE Transactions on Comm Tech, 1981, 29: 982–989.

    Article  Google Scholar 

  20. FLOCH B L, ALARD M, BERROU C. Coded orthogonal frequency division multiplex [J]. Proc of the IEEE, 2002, 83: 982–996.

    Article  Google Scholar 

  21. BOLCSKEI H. Orthogonal frequency division multiplexing based on offset QAM [C]// Advances in Gabor Analysis. 2003: 321–352.

    Chapter  Google Scholar 

  22. BELLANGER M. Physical layer for future broadband radio systems [C]// Radio and Wireless Symposium Conference. New Orleans, LA, USA: IEEE, 2010: 436–439.

    Google Scholar 

  23. ZHANG W, KONG H, XIA X G, LETAIEF K B. Space-time/ frequency coding for MIMO-OFDM in next generation broadband wireless systems [J]. Wireless Communications IEEE, 2007, 14: 32–43.

    Article  Google Scholar 

  24. KASHIMA T, FUKAWA K, SUZUKI H. Adaptive MAP receiver via the EM algorithm and message passings for MIMO-OFDM mobile communications [J]. IEEE J Sel Areas Commun, 2006, 24: 437–447.

    Article  Google Scholar 

  25. PAULRAJ A J, GORE D A, NABAR R U, BÖLCSKEI H. An overview of MIMO communications—A key to gigabit wireless [J]. Proc IEEE, 2004, 92: 198–218.

    Article  Google Scholar 

  26. SHIN C, HEATH R W, POWERS E J. Blind channel estimation for MIMO-OFDM systems [J]. IEEE Trans on Veh Tech, 2007, 56: 2569–2582.

    Article  Google Scholar 

  27. ROSENHOUSE I, WEISS A J. Combined analog and digital error-correcting codes for analog information source [J]. IEEE Trans on Comm, 2007, 55: 2073–2083.

    Article  Google Scholar 

  28. GALLAGER R G. Low density parity check codes [J]. IRE Trans on Information Theory, 1962, 8: 21–28.

    Article  MathSciNet  MATH  Google Scholar 

  29. MACKAY D J C, NEAL R M. Near Shannon limit performance of low density parity check codes [J]. Electronic Letters, 1996, 32: 1645–1646.

    Article  Google Scholar 

  30. BOLCSKEI H. MIMO-OFDM wireless systems: Basics, perspectives and challenges [J]. IEEE Wirel Commun, 2006, 13: 31–37.

    Article  Google Scholar 

  31. ALAMOUTI S M. A simple transmit diversity technique for wireless communications [J]. IEEE J Sel Areas Commun, 1998, 16: 1451–1458.

    Article  Google Scholar 

  32. SHAH H, HEDAYAT A, NOSRATINIA A. Performance of concatenated channel codes and orthogonal space-time block codes [J]. IEEE Trans on Wirel Commun, 2006, 5: 1406–1414.

    Article  Google Scholar 

  33. LOSKOT P, BEAULIEU N C. Approximate performance analysis of coded STBC-OFDM systems over arbitrary correlated generalized Ricean fading channels [J]. IEEE Trans on Commun, 2009, 57: 2235–2238.

    Article  Google Scholar 

  34. GUPTA B, SAINI D S. A low complexity decoding scheme of STFBC MIMO-OFDM system [C]// Proc Wireless Advanced (WiAd). London, UK: IEEE, 2012: 176–180.

    Google Scholar 

  35. GUPTA B, SAINI D S. BER analysis of ST-Block coded MIMO-OFDM systems with frequency domain equalization in quasi-static mobile channels [C]// Annual IEEE Proc, India Conf (INDICON). Hyderabad, India, IEEE, 2011: 1–4.

    Google Scholar 

  36. GUPTA, SAINI D S. BER analysis of space-frequency block coded MIMO-OFDM systems using different equalizers in quasi-static mobile radio channel [C]// Proc Communication Systems and Network Technologies (CSNT-11), Conf. Katra, India, 2011: 520–524.

    Google Scholar 

  37. DANIELS R C, CARAMANIS C M, HEATH R W. Adaptation in convolutionally coded MIMO-OFDM wireless systems through supervised learning and SNR ordering [J]. IEEE Trans on Veh Technol, 2010, 59: 114–126.

    Article  Google Scholar 

  38. GUPTA B, SAINI D S. Moment generating function-based pairwise error probability analysis of concatenated low density parity check codes with Alamouti coded multiple input multiple output-orthogonal frequency division multiplexing systems [J]. IET Communications, 2014, 8: 399–412.

    Article  Google Scholar 

  39. BIGDELI M, ABOLHASSANI B. A novel method to derive transfer function and tight ber bound of convolutional codes [J]. Canadian J Electrical and Computer Engineering, 2015, 38: 125–129.

    Article  Google Scholar 

  40. LIU Y, XIA X G, ZHANG H. Distributed linear convolutional space-time coding for two-relay full-duplex asynchronous cooperative networks [J]. IEEE Trans on Wirel Comm, 2013, 12: 6406–6417.

    Article  Google Scholar 

  41. YANG Q, LIEW S C. Asynchronous convolutional-coded physicallayer network coding [J]. IEEE Trans on Wirel Comm, 2015, 14: 1380–1395.

    Article  Google Scholar 

  42. GROSJEAN L, RASMUSSEN L K, THOBABEN R, SKOGLUND M. Systematic LDPC convolutional codes: Asymptotic and finitelength anytime properties [J]. IEEE Trans on Comm, 2014, 62: 4165–4183.

    Article  Google Scholar 

  43. SI Z, THOBABEN R, SKOGLUND M. Bilayer LDPC convolutional codes for decode-and-forward relaying [J]. IEEE Trans on Comm, 2013, 61: 3086–3099.

    Article  Google Scholar 

  44. CHEN L. Iterative soft decoding of reed-solomon convolutional concatenated codes [J]. IEEE Trans on Comm, 2013, 61: 4076–4085.

    Article  Google Scholar 

  45. NGO H A, AHMED S, YANG L L, HANZO L. Non-coherent cooperative communications dispensing with channel estimation relying on erasure insertion aided reed-solomon coded SFH M-ary FSK subjected to partial-band interference and rayleigh fading [J]. IEEE Trans on Comm, 2012, 60: 2177–2186.

    Article  Google Scholar 

  46. KAYA H, OZTURK E. Performance analysis of distributed turbo coded scheme with two ordered best relays [J]. IET Commun, 2015, 9: 638–648.

    Article  Google Scholar 

  47. ZHAN M, WU J. ZHANG Z Z, WEN H, WU J J. Low-complexity error correction for ISO/IEC/IEEE 21451-5 sensor and actuator networks [J]. IEEE Sensors J, 2015, 15: 2622–2630.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arun Agarwal.

Additional information

An erratum to this article is available at https://doi.org/10.1007/s11771-017-3599-1.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agarwal, A., Mehta, S.N. Performance analysis and design of MIMO-OFDM system using concatenated forward error correction codes. J. Cent. South Univ. 24, 1322–1343 (2017). https://doi.org/10.1007/s11771-017-3537-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-017-3537-2

Key words

Navigation