Skip to main content

Orthogonal Frequency Division Multiplexing Based on Offset QAM

  • Chapter
Advances in Gabor Analysis

Part of the book series: Applied and Numerical Harmonic Analysis ((ANHA))

Abstract

One of the factors determining the performance of wireless Orthogonal Frequency Division Multiplexing (OFDM) systems is time-frequency localization of the transmitter and receiver pulse shaping filters. OFDM based on offset quadrature amplitude modulation (OFDM/OQAM) bypasses a major disadvantage of OFDM based on ordinary QAM, namely the fact that time-frequency well-localized pulse shaping filters are prohibited in the case of critical time-frequency density where spectral efficiency is maximal. In this chapter, we study the problem of pulse shaping filter design for OFDM/OQAM systems and we establish relations between OFDM/OQAM and Wilson and Gabor expansions. We derive general orthogonality conditions for OFDM/OQAM systems and we propose a computationally efficient method for designing time-frequency well-localized OFDM/OQAM pulse shaping filters with arbitrary length and arbitrary overlapping factors. We furthermore introduce biorthogonal frequency division multiplexing based on OQAM (BFDM/OQAM). Finally, design examples are presented to assess the performance of the proposed design algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [] R. W. Chang, “Synthesis of band-limited orthogonal signals for multichannel data transmission,”Bell Syst. Tech. J. vol. 45,pp. 1775–1796Dec.1966.

    Google Scholar 

  2. [] B. R. Saltzberg, “Performance of an efficient parallel data transmission system,”IEEE Trans. Comm. Technol. vol. 15,pp. 805–811Dec.1967.

    Article  Google Scholar 

  3. [] S. B. Weinstein and P. M. Ebert, “Data transmission by frequency division multiplexing using the discrete Fourier transform,”IEEE Trans. Comm. Tech. vol. 19 pp. 628–634Oct.1971.

    Article  Google Scholar 

  4. [] A. Peled and A. Ruiz, “Frequency domain data transmission using reduced computational complexity algorithms,” inProc. IEEE ICASSP80(Denver, CO), pp.964–967 1980.

    Google Scholar 

  5. [] L. J. Cimini, “Analysis and simulation of a digital mobile channel using orthogonal frequency division multiplexing,”IEEE Trans. Comm.vol.33 pp. 665–675July1985.

    Article  Google Scholar 

  6. [] J. S. Chow, J. C. Tu, and J. M. Cioffi, “A discrete multitone transceiver system for HDSL applications,”IEEE J. Sel. Areas Comm.,vol. 9, pp.895–908, Aug.1991.

    Article  Google Scholar 

  7. [] N. J. Fliege, “Orthogonal multiple carrier data transmission,”European Transactions on Telecommunications vol. 3,pp. 225–253May1992.

    Article  Google Scholar 

  8. []W. Y. Zouand Y. Wu, “COFDM: An overview,”IEEE Trans. Broadc., vol.41,pp. 1–8, March1995.

    Article  Google Scholar 

  9. [] B. LeFloch, M. Alard, and C. Berrou, “Coded orthogonal frequency division multiplex,”Proc. of IEEE vol. 83 pp. 982–996 June1995.

    Article  Google Scholar 

  10. [] M. SandellDesign and analysis of estimators for multicarrier modulation and ultrasonic imaging.PhD thesis, Lulea University of Technology, Lulea, Sweden1996.

    Google Scholar 

  11. [] R. HaasApplication des transmissions ¨¤ porteuses multiples aux communications radio mobiles.PhD thesis, Ecole Nationale Sup¨¦rieure des T¨¦l¨¦communications Paris, Paris, France, Jan. 1996.

    Google Scholar 

  12. [] H. Sari, G. Karam, and I. Jeanclaude, “Transmission techniques for digital terrestrial TV broadcasting,”IEEE Communications Magazine pp. 100–109 Feb.1995.

    Google Scholar 

  13. A. Vahlin and N. Holte, “Optimal finite duration pulses for OFDM,”IEEE Trans. Comm.vol. 4, pp. 10–14, Jan. 1996.

    Article  Google Scholar 

  14. W. Kozek and A. F. Molisch, “Robust and efficient multicarrier communication by nonorthogonal Weyl¡ªHeisenberg systems,”IEEE J. Sel. Areas Comm.vol. 16, pp. 1579–1589, Oct. 1998.

    Article  Google Scholar 

  15. M. Wahlqvist, C. Östberg, J. J. van de Beek, O. Edfors, and P. O. Börjesson, “A conceptual study of OFDM-based multiple access schemes: Part 1 ¡ª Air interface requirements,” Tech. Rep. 117/96, ETSI STC SMG2 meeting no. 18, Helsinki, Finland, May 1996.

    Google Scholar 

  16. P. K. Remvik and N. Holte, “Carrier frequency offset robustness for OFDM systems with different pulse shaping filters,” inProc. IEEE GLOBECOM-97(Phoenix, AZ), pp. 11–15, 1997.

    Google Scholar 

  17. [] I. DaubechiesTen Lectures on Wavelets.SIAM, 1992.

    Book  Google Scholar 

  18. R. Haas and J. C. Belfiore, “A time-frequency well-localized pulse for multiple carrier transmission,”Wireless Personal Communicationsvol. 5, pp. 1–18, 1997.

    Article  Google Scholar 

  19. M. de CourvilleUtilisation de bases orthogonales pour l’algorithmique adaptive et l’egalisation des syst¨¨mes multiporteuses.PhD thesis, Ecole Nationale Sup¨¦rieure des T¨¦l¨¦communications, Paris, France, Oct. 1996.

    Google Scholar 

  20. [] R. Hleiss, P. Duhamel, and M. Charbit, “Oversampled OFDM systems,” inProc. of Int. Conf. on DSP(Santorini, Greece), pp. 329–332, July 1997.

    Google Scholar 

  21. [] B. Hirosaki, “An orthogonally multiplexed QAM system using the discrete Fourier transform,”IEEE Trans. Comm.vol. 29, pp. 982–989, July 1981.

    Article  Google Scholar 

  22. B. Hirosaki, S. Hasegawa, and A. Sabato, “Advanced groupband data modem using orthogonally multiplexed QAM technique,”IEEE Trans. Comm.vol. 34, pp. 587–592, June 1986.

    Article  Google Scholar 

  23. C. Roche and P. Siohan, “Bancs de filtres modul¨¦s de type IOTA/EGF: Le cas orthogonal,” Tech. Rep. 5225, CNET, Feb. 1998.

    Google Scholar 

  24. P. Siohan and C. Roche, “Analytical design for a family of cosine modulated filter banks,” inProc. IEEE ISCAS-98(Monterey, CA), May 1998.

    Google Scholar 

  25. I. Daubechies, S. Jaffard, and J. L. Journ¨¦, “A simple Wilson orthonormal basis with exponential decay,”SIAM J. Math. Anal.vol. 22, pp. 554–572, 1991.

    Article  MathSciNet  MATH  Google Scholar 

  26. C. Heil, “A discrete Zak transform,” Tech. Rep. MTR-89W000128, The MITRE Corporation, Dec. 1989.

    Google Scholar 

  27. H. Bölcskei and F. Hlawatsch, “Discrete Zak transforms, polyphase transforms, and applications,”IEEE Trans. Signal Processingvol. 45, pp. 851–866, April 1997.

    Article  Google Scholar 

  28. [] T. S. RappaportWireless communications: Principles E4 Practice.Upper Saddle River, New Jersey: Prentice Hall, 1996.

    Google Scholar 

  29. P. A. Bello, “Characterization of randomly time-variant linear channels,”IEEE Trans. Comm. Syst.vol. 11, pp. 360–393, 1963.

    Article  Google Scholar 

  30. P. P. VaidyanathanMultirate Systems and Filter Banks.Englewood Cliffs (NJ): Prentice Hall, 1993.

    Google Scholar 

  31. H. G. Feichtinger and T. Strohmer, eds.Gabor Analysis and Algorithms: Theory and Applications.Boston (MA): Birkhäuser, 1998.

    MATH  Google Scholar 

  32. P. Auscher, “Remarks on the local Fourier bases,” inWavelets: Mathematics and Applications(J. J. Benedetto and M. W. Frazier, eds.), pp. 203–218, Boca Raton, FL: CRC Press, 1994.

    Google Scholar 

  33. S. S. Sandberg and M. A. Tzannes, “Overlapped discrete multitone modulation for high speed copper wire communications,”IEEE J. Sel. Areas Comm.vol. 13, no. 9, pp. 1571–1585, 1995.

    Article  Google Scholar 

  34. C. E. Heil and D. F. Walnut, “Continuous and discrete wavelet transforms,”SIAM Rev.vol. 31, pp. 628–666, Dec. 1989.

    Article  MathSciNet  MATH  Google Scholar 

  35. A. J. E. M. Janssen, “Duality and biorthogonality for Weyl¡ªHeisenberg frames,”J. Fourier Analysis and Applicationsvol. 1, no. 4, pp. 403–436, 1995.

    Article  MATH  Google Scholar 

  36. I. Daubechies, H. J. Landau, and Z. Landau, “Gabor time-frequency lattices and the Wexler-Raz identity,”J. Fourier Analysis and Applicationsvol. 1, no. 4, pp. 437–478, 1995.

    Article  MathSciNet  MATH  Google Scholar 

  37. A. Ron and Z. Shen, “Frames and stable bases for shift-invariant subspaces of L2(Rd),”Canadian Journal of Mathematicsvol. 47, no. 5, pp. 1051–1094, 1995.

    Article  MathSciNet  MATH  Google Scholar 

  38. [] A. J. E. M. Janssen, “The duality condition for Weyl¡ªHeisenberg frames,” inGabor Analysis and Algorithms: Theory and Applications(H. G. Feichtinger and T. Strohmer, eds.), pp. 33–84, Boston (MA): Birkhäuser, 1998.

    Chapter  Google Scholar 

  39. R. D. Koilpillai and P. P. Vaidyanathan, “Cosine-modulated FIR filter banks satisfying perfect reconstruction,”IEEE Trans. Signal Processingvol. 40, pp. 770–783, April 1992.

    Article  Google Scholar 

  40. H. Bölcskei and F. Hlawatsch, “Oversampled cosine modulated filter banks with perfect reconstruction,”IEEE Trans. Circuits and Systems II Special Issue on Multirate Systems Filter Banks Wavelets and Applications vol. 45, pp. 1057–1071, Aug. 1998.

    MATH  Google Scholar 

  41. H. Bölcskei, K. Gröchenig, F. Hlawatsch, and H. G. Feichtinger, “Over-sampled Wilson expansions,”IEEE Signal Processing Letters vol. 4, pp. 106–108, April 1997.

    Google Scholar 

  42. H. Bölcskei, H. G. Feichtinger, K. Gröchenig, and F. Hlawatsch, “Discrete-time Wilson expansions,”in Proc. IEEE-SP Int. Sympos. Time-Frequency Time-Scale Analysis(Paris, France), pp. 525–528, June 1996.

    Google Scholar 

  43. H. Bölcskei, “Efficient design of pulse shaping filters for OFDM systems,” inProc. SPIE Wavelet Applications in Signal and Image Processing VIIvol. 3813, (Denver (CO)), pp. 625–636, July 1999.

    Google Scholar 

  44. M. Zibulski and Y. Y. Zeevi, “Oversampling in the Gabor scheme,”IEEE Trans. Signal Processing vol. 41, pp. 2679–2687, Aug. 1993.

    Article  MATH  Google Scholar 

  45. T. Strohmer, “Approximation of dual Gabor frames, window decay, and wireless communications,”Applied and Computational Harmonic Analysisvol. 11no. 2, pp. 243–262, 2001.

    Article  MathSciNet  MATH  Google Scholar 

  46. A. J. E. M. Janssen and H. Bölcskei, “Equivalence of two methods for constructing tight Gabor frames,”IEEE Sig. Proc. Lettersvol. 7, pp. 79–82, April 2000.

    Article  Google Scholar 

  47. H. Bölcskei, “A necessary and sufficient condition for dual Weyl¡ªHeisenberg frames to be compactly supported,”J. Fourier Anal. Appl.vol. 5, no. 5, pp. 409–419, 1999.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bölcskei, H. (2003). Orthogonal Frequency Division Multiplexing Based on Offset QAM. In: Feichtinger, H.G., Strohmer, T. (eds) Advances in Gabor Analysis. Applied and Numerical Harmonic Analysis. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-0133-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0133-5_12

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-6627-3

  • Online ISBN: 978-1-4612-0133-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics