Skip to main content
Log in

Strain induced changes in performance of strained-Si/strained-Si1-y Ge y /relaxed-Si1-x Ge x MOSFETs and circuits for digital applications

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Growing a silicon (Si) layer on top of stacked Si-germanium (Ge) compressive layer can introduce a tensile strain on the former, resulting in superior device characteristics. Such a structure can be used for high performance complementary metal-oxide-semiconductor (CMOS) circuits. Down scaling metal-oxide-semiconductor field-effect transistors (MOSFETs) into the deep submicron/nanometer regime forces the source (S) and drain (D) series resistance to become comparable with the channel resistance and thus it cannot be neglected. Owing to the persisting technological importance of strained Si devices, in this work, we propose a multi-iterative technique for evaluating the performance of strained-Si/strained-Si1-y Ge y /relaxed-Si1-x Ge x MOSFETs and its related circuits in the presence of S/D series resistance, leading to the development of a simulator that can faithfully plot the performance of the device and related digital circuits. The impact of strain on device/circuit performance is also investigated with emphasis on metal gate and high-k dielectric materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. DALAPATI G K, CHATTOPADHYAY S, DRISCOLL L S, O’NEILL A G, KWA K S K, OLSEN S H. Extraction of strained-Si metal-oxide-semiconductor field-effect transistor parameters using small signal channel conductance method [J]. Journal of Applied Physics, 2006, 99(3): 034501–034508.

    Article  Google Scholar 

  2. LEE M L, FITZGERALD E A, BULSARA M T, CURRIE M T, LOCHTEFELD A. Strained Si, SiGe, and Ge channels for high-mobility metal-oxide-semiconductor field-effect transistors [J]. Journal of Applied Physics, 2005, 97(1): 011101–011127.

    Article  Google Scholar 

  3. RIM K, HOYT J L, GIBBONS J F. Fabrication and analysis of deep submicron strained-Si N-MOSFET’s [J]. IEEE Transactions on Electron Devices, 2000, 47(7): 1406–1415.

    Article  Google Scholar 

  4. FOSSUM J G, ZHANG W. Performance projections of scaled CMOS devices and circuits with strained Si-on-SiGe channels [J]. IEEE Transactions on Electron Devices, 2003, 50(4): 1042–1049.

    Article  Google Scholar 

  5. WANG Bin, ZHANG He-ming, HU Hui-yong, ZHANG Yu-ming, ZHOU Chun-yu, LI Yu-chen. Effect of substrate doping on threshold voltages of buried channel pMOSFET based on strained-SiGe technology [J]. Journal of Central South University, 2014, 21: 2292–2297.

    Article  Google Scholar 

  6. FLACHOWSKY S, WEI A, ILLGEN R, HERRMANN T, HONTSCHEL J, HORSTMANN M, KLIX W, STENZEL R. Understanding strain-induced drive-current enhancement in strained-silicon n-MOSFET and p-MOSFET [J]. IEEE Transactions on Electron Devices, 2010, 57(6): 1343–1354.

    Article  Google Scholar 

  7. AUTH C, CAPPELLANI A, CHUN J S, DALIS A, DAVIS A, GHANI T, GLASS G, GLASSMAN T, HARPER M, HATTENDORF M, HENTGES P, JALOVIAR S, JOSHI S, KLAUS J, KUHN K, LAVRIC D, LU M, MARIAPPAN H, MISTRY K, NORRIS B, RAHHAL-ORABI N, RANADE P, SANDFORD J, SHIFREN L, SOUW V, TONE K, TAMBWE F, THOMPSON A, TOWNER D, TROEGER T, VANDERVOORN P, WALLACE C, WIEDEMER J, WIEGAND C. 45 nm high-k + metal gate strain-enhanced transistors [C]// Symposium on VLSI Technology Digest of Technical Papers. Honolulu, HI, USA: IEEE, 2008: 128–129.

    Google Scholar 

  8. CHEN C H, LEE T L, HOU T H, CHEN C L, CHEN C C, HSU J W, CHENG K L, CHIU Y H, TAO H J, JIN Y, DIAZ C H, CHEN S C, LIANG M S. Stress memorization technique (SMT) by selectively strained-nitride capping for sub-65nm high-performance strained-Si device application [C]// Symposium on VLSI Technology Digest of Technical Papers. Honolulu, HI, USA: IEEE, 2004: 56–57.

    Google Scholar 

  9. GHANI T, ARMSTRONG M, AUTH C, BOST M, CHARVAT P, GLASS G, HOFFMANN T, JOHNSON K, KENYON C, KLAUS J, MCINTYRE B, MISTRY K, MURTHY A, SANDFORD J, SILBERSTEIN M, SIVAKUMAR S, SMITH P, ZAWADZKI K, THOMPSON S, BOHR M. A 90 nm high volume manufacturing logic technology featuring novel 45 nm gate length strained silicon CMOS transistors [C]// IEEE IEDM Technical Digest. Washington DC, USA: IEEE, 2003: 978–980.

    Google Scholar 

  10. ANG K W, CHUI K J, BLIZNETSOV V, DU A, BALASUBRAMANIAN N, LI M F, SAMUDRA G, YEO Y C. Enhanced performance in 50 nm n-MOSFETs with silicon-carbon source/drain regions [C]// IEEE IEDM Technical Digest. San Francisco, CA, USA: IEEE, 2004: 1069–1071.

    Google Scholar 

  11. CURRIE M T, LEITZ C W, LANGDO T A, TARASCHI G, FITZGERALD E A, ANTONIADIS D A. Carrier mobilities and process stability of strained Si n-and p-MOSFETs on SiGe virtual substrates [J]. Journal of Vacuum Science & Technology B, 2001, 19(6): 2268–2279.

    Article  Google Scholar 

  12. LEITZ C W, CURRIE M T, LEE M L, CHENG Z Y, ANTONIADIS D A, FITZGERALD E A. Hole mobility enhancements in strained Si/Si1-yGey p-type metal-oxide-semiconductor field-effect transistors grown on relaxed Si1-xGex (x<y) virtual substrates [J]. Applied Physics Letters, 2001, 79(25): 4246–4248.

    Article  Google Scholar 

  13. CHENG Z, JUNG J, LEE M L, PITERA A J, HOYT J L, ANTONIADIS D A, FITZGERALD E A. Hole mobility enhancement in strained-Si/strained-SiGe heterostructure p-MOSFETs fabricated on SiGe-on-insulator (SGOI) [J]. Semiconductor Science and Technology, 2004, 19: L48–L51.

    Article  Google Scholar 

  14. JUNG J, YU S, LEE M L, HOYT J L, FITZGERALD E A, ANTONIADIS D A. Mobility enhancement in dual-channel P-MOSFETs [J]. IEEE Transactions on Electron Devices, 2004, 51(9): 1424–1431.

    Article  Google Scholar 

  15. LEE M L, FITZGERALD E A. Hole mobility enhancements in nanometer-scale strained-silicon heterostructures grown on Ge-rich relaxed Si1-xGex [J]. Journal of Applied Physics, 2003, 94(4): 2590–2596.

    Article  Google Scholar 

  16. TSANG Y L, CHATTOPADHYAY S, UPPAL S, ESCOBEDO COUSIN E, RAMAKRISHNAN H K, OLSEN S H, O’NEILL A G. Modeling of the threshold voltage in strained Si/Si1-xGex/Si1-yGey (x = y) CMOS architectures [J]. IEEE Transactions on Electron Devices, 2007, 54(11): 3040–3048.

    Article  Google Scholar 

  17. JUNG J, YU S, OLUBUYIDE O O, HOYT J L, ANTONIADIS D A, LEE M L, FITZGERALD E A. Effect of thermal processing on mobility in strained Si/strained Si1-yGey on relaxed Si1-xGex (x<y) virtual substrates [J]. Applied Physics Letters, 2004, 84(17): 3319–3321.

    Article  Google Scholar 

  18. OLSEN S H, O’NEILL A G, CHATTOPADHYAY S, DRISCOLL L S, KWA K S K, NORRIS D J, CULLIS A G, PAUL D J. Study of single-and dual-channel designs for high-performance strained-Si-SiGe n-MOSFETs [J]. IEEE Transactions on Electron Devices, 2004, 51(7): 1245–1253.

    Article  Google Scholar 

  19. CHUN S K, WANG K L. Effective mass and mobility of holes in strained Si1-xGex layers on (001) Si1-yGey substrate [J]. IEEE Transactions on Electron Devices, 1992, 39(9): 2153–2164.

    Article  Google Scholar 

  20. LIN Da-wen, CHENG Ming-lung, WANG Shyh-wei, WU Chung-Cheng, CHEN Ming-Jer. A novel method of MOSFET series resistance extraction featuring constant mobility criteria and mobility universality [J]. IEEE Transactions on Electron Devices, 2010, 57(4): 890–897.

    Article  Google Scholar 

  21. CAMPBELL J P, CHEUNG K P, SUEHLE J S, OATES A. A simple series resistance extraction methodology for advanced CMOS devices [J]. IEEE Electron Device Letters, 2011, 32(8): 1047–1049.

    Article  Google Scholar 

  22. BINDU B, DASGUPTA N, DASGUPTA A. Analytical model of drain current of strained-Si/strained-Si1-YGeY/relaxed-Si1-XGeX NMOSFETs and PMOSFETs for circuit simulation [J]. Solid-State Electronics, 2006, 50(3): 448–455.

    Article  Google Scholar 

  23. ENGSIEW K, ANWAR S, ISMAIL R. Quantum mechanical effects on the threshold voltage of nanoscale dual channel strained Si/strained Si1-yGey/relaxed Si1-xGex MOSFETs [J]. Journal of Computational and Theoretical Nanoscience, 2013, 10(5): 1231–1235.

    Article  Google Scholar 

  24. RABAEY J M, CHANDRAKASAN A, NIKOLIC B. Digital integrated circuits: A design perspective [M]. New Jersey: Pearson Education, 2003.

    Google Scholar 

  25. PSPICE User’s manual [M]// Cadence ORCAD 16.6. San Jose, CA, USA: Cadence Design Systems Inc, 2012.

    Google Scholar 

  26. TANNER Tools user’s manual [M]. Monrovia, CA: Tanner Research Inc, 2006.

  27. ATLAS Users manual [M]. Santa Clara, CA, USA: Silvaco Inc, 2012.

  28. TAURUS MEDICI user guide [M]. Mountain View, CA, USA: Synopsys Inc, 2012.

  29. TABERKIT A M, BOUAZZA-GUEN A. Engineering of nano-scale strained-MOSFETs: A solution for the mobility enhancement [J]. World Academy of Science, Engineering and Technology, International Journal of Electrical, Computer, Energetic, Electronic and Communication Engineering, 2015, 9(12): 1330–1333.

    Google Scholar 

  30. TANG Zhao-huan, TAN Kai-zhou, CUI Wei, WANG Bin. µMAX enhanced 190% of a strained NMOS based on SiGe virtual substrate [J]. Advanced Materials Research, 2013, 756–759: 154–157.

    Google Scholar 

  31. YU J, WANG C, YANG Y. Progress on the numerical calculation of electrical characteristics of strained SiGe channel p-MOSFET [J]. Applied Mechanics and Materials, 2013, 320: 465–472.

    Article  Google Scholar 

  32. ARORA N. MOSFET modeling for VLSI simulation: Theory and practice [M]. Singapore: World Scientific, 2007.

    Book  Google Scholar 

  33. RIM K, CHU J, CHEN H, JENKINS K A, KANARSKY T, LEE K, MOCUTA A, ZHU H, ROY R, NEWBURY J, OTT J, PETRARCA K, MOONEY P, LACEY D, KOESTER S, CHAN K, BOYD D, IEONG M, WONG H S. Characteristics and device design of sub-100 nm strained Si n-and p-MOSFETs [C]// Symposium on VLSI Technology Digest of Technical Papers. Honolulu, HI, USA: IEEE, 2002: 98–99.

    Google Scholar 

  34. JUNG J, LEE M L, YU S, FITZGERALD E A, ANTONIADIS D A. Implementation of both high-hole and electron mobility in strained Si/strained Si1-yGey on relaxed Si1-xGex (x<y) virtual substrate [J]. IEEE Electron Device Letters, 2003, 24(7): 460–462.

    Article  Google Scholar 

  35. TEMPLE M P, PAUL D J, TANG Y T, WAITE A M, EVANS A G R, O’NEILL A G, ZHANG J, GRASBY T, PARKER E H C. The relative performance enhancement of strained-Si and buried channel p-MOS as a function of lithographic and effective gate lengths [C]// International Semiconductor Device Research Symposium. Washington DC, USA: IEEE, 2003: 51–52.

    Google Scholar 

  36. BSIM Model. [2013-11-01]. http://www-device.eecs.berkeley. edu/bsim.

  37. RAMAKRISHNAN H. Strained silicon technology for low-power high-speed circuit applications [R]. U.K.: Newcastle University, 2008.

    Google Scholar 

  38. HWANG J R, HO J H, TING S M, CHEN T P, HSIEH Y S, HUANG C C, CHIANG Y Y, LEE H K, LIU A, SHEN T M, BRAITHWAITE G, CURRIE M, GERRISH N, HAMMOND R, LOCHTEFELD A, SINGAPOREWALA F, BULSARA M, XIANG Q, LIN M R, SHIAU W T, LOH Y T, CHEN J K, CHIEN S C, WEN F. Performance of 70 nm strained-silicon CMOS devices [C]// Symposium on VLSI Technology Digest of Technical Papers. Kyoto, Japan: IEEE, 2003: 103–104.

    Google Scholar 

  39. KANG S M, LEBLEBICI Y. CMOS digital integrated circuits: analysis and design [M]. New York: McGraw–Hill, 2003.

    Google Scholar 

  40. KUMAR S, JHA S. Impact of elliptical cross-section on the propagation delay of multi-channel gate-all-around MOSFET based inverters [J]. Microelectronics Journal, 2013, 44: 844–851.

    Article  Google Scholar 

  41. FITZGERALD E A, GERRISH N. CMOS inverter and integrated circuits utilizing strained silicon surface channel MOSFETS: US, 0034529 [P]. 2003.

    Google Scholar 

  42. FRANCO J, KACZER B, MITARD J, TOLEDANO-LUQUE M, ROUSSEL P J, WITTERS L, GRASSER T, GROESENEKEN G. NBTI reliability of SiGe and Ge channel pMOSFETs with SiO2/HfO2 dielectric stack [J]. IEEE Transactions on Device and Materials Reliability, 2013, 13(4): 497–506.

    Article  Google Scholar 

  43. BEISTER J, WACHOWIAK A, BOSCHKE R, HERRMANN T, UHLARZ M, MIKOLAJICK T. Mobility investigations on strained 30-nm high-k metal gate MOSFETs by geometrical magnetoresistance effect [J]. IEEE Transactions on Electron Devices, 2015, 62(6): 1819–1825.

    Article  Google Scholar 

  44. GHOSH K, DAS S, FISSEL A, OSTEN H J, LAHA A. Epitaxial Gd2O3 on strained Si1-xGex layers for next generation complementary metal oxide semiconductor device application [J]. Applied Physics Letters, 2013, 103(15): 153501–153504.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kumar Subindu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Subindu, K., Amrita, K. & Mukul K, D. Strain induced changes in performance of strained-Si/strained-Si1-y Ge y /relaxed-Si1-x Ge x MOSFETs and circuits for digital applications. J. Cent. South Univ. 24, 1233–1244 (2017). https://doi.org/10.1007/s11771-017-3527-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-017-3527-4

Key words

Navigation