Skip to main content
Log in

Improved estimation of rotor position for sensorless control of a PMSM based on a sliding mode observer

  • Mechanical Engineering, Control Science and Information Engineering
  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

This work proposes a new strategy to improve the rotor position estimation of a permanent magnet synchronous motor (PMSM) over wide speed range. Rotor position estimation of a PMSM is performed by using sliding mode observer (SMO). An adaptive observer gain was designed based on Lyapunov function and applied to solve the chattering problem caused by the discontinuous function of the SMO in the wide speed range. The cascade low-pass filter (LPF) with variable cut-off frequency was proposed to reduce the chattering problem and to attenuate the filtering capability of the SMO. In addition, the phase shift caused by the filter was counterbalanced by applying the variable phase delay compensation for the whole speed area. High accuracy estimation result of the rotor position was obtained in the experiment by applying the proposed estimation strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. CHI W C, CHENG M Y. Implementation of a sliding-mode-based position sensorless drive for high-speed micro permanent-magnet synchronous motors [J]. ISA Trans, 2014, 53(2): 444–453.

    Article  Google Scholar 

  2. ZHANG B, PI Y, LUO Y. Enhanced robust fractional order proportional-plus-integral controller based on neural network for velocity control of permanent magnet synchronous motor [J]. ISA Trans, 2012, 52(4): 510–516.

    Article  Google Scholar 

  3. CHI S, ZHANG Z, XU L. Sliding-mode sensorless control of direct-drive PM synchronous motors for washing machine applications [J]. IEEE Trans Ind Appl, 2009, 45(2): 582–590.

    Article  Google Scholar 

  4. HOLTZ J, JUNTAO J. Sensorless vector control of induction motors at very low speed using a nonlinear inverter model and parameter identification [J]. IEEE Trans Ind Appl, 2002, 38(4): 1087–1095.

    Article  Google Scholar 

  5. ACCETTA A, CIRRINCIONE M, PUCCI M. TLS EXIN based neural sensorless control of a high dynamic PMSM [J]. Control Eng Pract., 2012, 20(7): 725–732.

    Article  Google Scholar 

  6. HOLTZ J, MODEL A S. Sensorless control of induction machines— With or without signal injection [J]. IEEE Transactions on Industrial Electronics, 2006, 53(1): 7–30.

    Article  Google Scholar 

  7. ZHU Z Q, GONG L M. Investigation of effectiveness of sensorless operation in carrier-signal-injection-based sensorless-control methods [J]. IEEE Trans Ind Electron, 2011, 58(8): 3431–3439.

    Article  Google Scholar 

  8. CORLEY M J, LORENZ R D. Rotor position and velocity estimation for a salient-pole permanent magnet synchronous machine at standstill and high speeds [J]. Ind Appl IEEE Trans, 1998, 34(4): 784–789.

    Article  Google Scholar 

  9. JANSEN P L, LORENZ R D. Transducerless position and velocity estimation in induction and salient AC machines [J]. IEEE Trans Ind Appl, 1995, 31: 488–495.

    Google Scholar 

  10. RACA D, GARCÍA P, REIGOSA D D, BRIZ F, LORENZ R D. Carrier-signal selection for sensorless control of PM synchronous machines at zero and very low speeds [J]. IEEE Trans Ind Appl, 2010, 46(1): 167–178.

    Article  Google Scholar 

  11. CUPERTINO F, PELLEGRINO G, GIANGRANDE P, MEMBER S, SALVATORE L. Sensorless position control of permanent-magnet motors with pulsating current injection and compensation of motor end effects [J]. IEEE Trans Ind Appl, 2011, 47(3): 1371–1379.

    Article  Google Scholar 

  12. RAUTE R, CARUANA C, STAINES C S, CILIA J, SUMNER M, MEMBER S, ASHER G M. Analysis and compensation of inverter nonlinearity effect on a sensorless pmsm drive at very low and zero speed operation [J]. IEEE Trans Ind Electron, 2010, 57(12): 4065–4074.

    Article  Google Scholar 

  13. ROBEISCHL E, SCHROEDL M. Optimized INFORM measurement sequence for sensorless PM synchronous motor drives with respect to minimum current distortion [J]. IEEE Trans Ind Appl, 2004, 40(2): 591–598.

    Article  Google Scholar 

  14. HENWOOD N, MALAIZE J, PRALY L, CENTRE C. A robust nonlinear luenberger observer for the sensorless control of sm-pmsM: Rotor position and magnets flux estimation [C]// Conference on IEEE Industrial Electronics Society. Montreal: IEEE, 2012: 1625–1630.

    Google Scholar 

  15. BRANDSTETTER P, RECH P, SIMONIK P. Sensorless control of permanent magnet synchronous motor using luenberger observer [C]// PIERS Proceedings. Cambridge, USA: PIERS. 2010: 424–428.

    Google Scholar 

  16. KHLAIEF A, BOUSSAK M, CHÂARI A. A MRAS-based stator resistance and speed estimation for sensorless vector controlled IPMSM drive [J]. Electr Power Syst Res, 2014, 108: 1–15.

    Article  Google Scholar 

  17. RASHED M, MACCONNELL P F A, STRONACH A F, ACARNLEY P. Sensorless indirect-rotor-field-orientation speed control of a permanent-magnet synchronous motor with statorresistance estimation [J]. IEEE Trans Ind Electron, 2007, 54(3): 1664–1675.

    Article  Google Scholar 

  18. ORLOWSKA-KOWALSKA T, DYBKOWSKI M, Stator-currentbased MRAS estimator for a wide range speed-sensorless induction-motor drive [J]. IEEE Trans Ind Electron, 2010, 57(4): 1296–1308.

  19. XU D, ZHANG S, LIU J. Very-low speed control of PMSM based on EKF estimation with closed loop optimized parameters [J]. ISA Trans, 2013, 52(6): 835–843.

    Article  MathSciNet  Google Scholar 

  20. SHEHATA E G. Speed sensorless torque control of an IPMSM drive with online stator resistance estimation using reduced order EKF [J]. Int J Electr Power Energy Syst, 2013, 47: 378–386.

    Article  Google Scholar 

  21. BENCHABANE F, TITAOUINE A, BENNIS O, YAHIA K, TAIBI D. Sensorless fuzzy sliding mode control for permanent magnet synchronous motor fed by AC/DC/AC converter [J]. Int J Syst Assur Eng Manag, 2012, 3(3): 221–229.

    Article  Google Scholar 

  22. AYDOGMUS O, SÜNTER S. Implementation of EKF based sensorless drive system using vector controlled PMSM fed by a matrix converter [J]. Int J Electr Power Energy Syst, 2012, 43(1): 736–743.

    Article  Google Scholar 

  23. BOLOGNANI S, OBOE R, ZIGLIOTTO M. Sensorless full-digital PMSM drive with EKF estimation of speed and rotor position [J]. IEEE Trans Ind Electron, 1999, 46(1): 184–191.

    Article  Google Scholar 

  24. BOLOGNANI S, TUBIANA L, ZIGLIOTTO M. Extended Kalman filter tuning in sensorless PMSM drives [J]. IEEE Trans Ind Appl, 2003, 39(6): 1741–1747.

    Article  Google Scholar 

  25. UTKIN V, GULDNER J, SHI J. Sliding mode control in electromechanical Systems [M]. New York: CRC Press, 1999.

    Google Scholar 

  26. HAN Y, CHOI J, KIM Y. Sensorless PMSM drive with a sliding mode control based adaptive speed and stator resistance estimator [J]. IEEE Trans. Magn., 2000, 36(5): 3588–3591.

    Article  Google Scholar 

  27. LEE H, LEE J. Design of iterative sliding mode observer for sensorless PMSM control [J]. IEEE Trans Control Syst Technol, 2013, 21(4): 1394–1399.

    Article  Google Scholar 

  28. ZHAO Y, QIAO W, WU L. Compensation algorithms for sliding mode observers in sensorless control of IPMSMs compensation algorithms for sliding mode observers in sensorless control of IPMSMs [C]// 2012 IEEE International, Electrie vehicle lonferenmce, 2012, Greenville, USA: IEEE, Doi: 10.1109/IEVC.2012.6183241.

    Google Scholar 

  29. KUNG Y S, NGUYEN V Q, HUANG C C, HUANG L C, Simulink/modelSim co-simulation of sensorless PMSM speed controller [C]// IEEE Symposium on Industrial Electronics and Applications Taipei, China: IEEE, 2011: 24–29.

    Google Scholar 

  30. JUNG Y, KIM M. Sliding mode observer for sensorless control of IPMSM drives [J]. J Power Electron., 2009, 9(1): 117–123.

    Google Scholar 

  31. ZHENG J, FENG Y, YU X. Hybrid terminal sliding mode observer design method for permanent magnet synchronous motor control system [C]// 2008 Int Work Var Struct Syst, New York: IEEE, 2008: 106–111.

    Chapter  Google Scholar 

  32. PAPONPEN K. Speed sensorless control of pmsm using an improved sliding mode observer with sigmoid function [J]. ECTI Trans. Electr. Eng Electron Commun, 2007, 5(1): 51–55.

    Google Scholar 

  33. KIM H, SON J, LEE J, MEMBER S. A high-speed sliding-mode observer for the sensorless speed control of a PMSM [J]. IEEE Transactioons on Industrial Electronics, 2011, 58(9): 4069–4077.

    Article  Google Scholar 

  34. QIAO Z, SHI T, WANG Y, YAN Y, XIA C, HE X. New sliding-mode observer for position sensorless control of permanent-magnet synchronous motor [J]. IEEE Trans Ind Electron, 2013, 60(2): 710–719.

    Article  Google Scholar 

  35. REN J J, LIU Y C, WANG N, LIU S Y. Sensorless control of ship propulsion interior permanent magnet synchronous motor based on a new sliding mode observer [J]. ISA Trans on Industrial Electronics, 2014: 1–12.

    Google Scholar 

  36. GENDUSO F, MICELI R, RANDO C, GALLUZZO G R. Back-EMF sensorless control algorithm for high dynamics performances PMSM [J]. IEEE Trans Ind Appl, 2009, 57: 1–9.

    Google Scholar 

  37. JANG J, SUL S, HA J. Sensorless drive of surface-mounted permanent-magnet motor by high-frequency signal injection based on magnetic saliency [J]. IEEE Trans Ind Appl, 2003, 39(4): 1031–1039.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seok-Kwon Jeong.

Additional information

Foundation item: Project(2012(PS−2012−090)) supported by the Pukyong National University Research Abroad Fund, Korea

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wibowo, W.K., Jeong, SK. Improved estimation of rotor position for sensorless control of a PMSM based on a sliding mode observer. J. Cent. South Univ. 23, 1643–1656 (2016). https://doi.org/10.1007/s11771-016-3219-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-016-3219-5

Keywords

Navigation