Skip to main content
Log in

Temperature field simulation of gob influenced by atmospheric pressure

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

The current temperature field model of mine gob does not take the boundary conditions of the atmospheric pressure into account, while the actual atmospheric pressure is influenced by weather, so as to produce differences between ventilation negative pressure of the working face and the negative pressure of gas drainage in gob, thus interfering the calculated results of gob temperature field. According to the characteristics of the actual air flow and temperature change in gob, a two-dimensional temperature field model of the gob was built, and the relational model between the air pressure of intake and outlet of the gob and the atmospheric pressure was established, which was introduced into the boundary conditions of temperature field to conduct calculation. By means of analysis on the simulation example, and comparison with the traditional model, the results indicate that atmospheric pressure change had notable impact on the distribution of gob temperature field. The laboratory test system of gob temperature field was constructed, and the relative error between simulated and measured value was no greater than 9.6%, which verified the effectiveness of the proposed model. This work offers theoretical basis for accurate calculation of temperature and prediction of ignition source in mine gob, and has important implications on preventing spontaneous combustion of coal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. ZARROUK S J, O’SULLIVAN M J, ST G EORGE J D. Modeling the spontaneous combustion of coal: The adiabatic testing procedure [J]. Combustion Theory and Modeling, 2006, 10(6): 907–926.

    Article  MATH  Google Scholar 

  2. DU Kun, LI Xi-bing, LIU Ke-wei, ZHAO Xiao-xin, ZHOU Zi-long, DONG Long-jun. Comprehensive evaluation of underground goaf risk and engineering application [J]. Journal of Central South University: Science and Technology, 2011, 42(9): 2802–2811. (in Chinese)

    Google Scholar 

  3. YUAN L, SMITH A C, BRUNE J F. Computational fluid dynamics study on the ventilation flow paths in longwall gobs [C]// Proceedings of the 11th US/North American Mine Ventilation Symposium. London, UK: Taylor & Francis Group Publishing, 2006: 591–598.

    Google Scholar 

  4. QI Guan-sheng, WANG De-ming, CHEN Yun, XIN Hai-hui, QI Xu-yao, ZHONG Xiao-xing. The application of kinetics based simulation method in thermal risk prediction of coal [J]. Journal of Loss Prevention in the Process Industries, 2014, 29(1): 22–29.

    Article  Google Scholar 

  5. WANG Yan-ming, SHI Guo-qing, WANG De-ming. Numerical study on thermal environment in mine gob under coal oxidation condition [J]. Ecological Chemistry and Engineering S, 2013, 20(3): 567–578.

    Article  Google Scholar 

  6. DENG Jun, MA Xiao-feng, ZHANG Yu-tao. Quantitative determination for the “Three Zones” of coal spontaneous combustion in gobs based on probability function [J]. Disaster Advances, 2013, 6(6): 210–218.

    Google Scholar 

  7. TANG Ming-yun, DAI Guang-long, QIN Ru-xiang, CHEN Qing-hua. Numerical analysis of air-leakage law in goaf of fully mechanized face [J]. Journal of Central South University: Science and Technology, 2012, 43(4): 1494–1498. (in Chinese)

    Google Scholar 

  8. MA Ai-chun, ZHOU Jie-min, OU Jian-ping, LI Wang-xing. CFD prediction of physical field for multi-air channel pulverized coal burner in rotary kiln [J]. Journal of Central South University of Technology, 2006, 13(1): 75–79.

    Article  Google Scholar 

  9. HU Yu-xi, LI Xi-bing. Bayes discriminant analysis method to identify risky of complicated goaf in mines and its application [J]. Transactions of the Nonferrous Metals Society of China, 2012, 22(2): 425–431.

    Article  Google Scholar 

  10. KARACAN C O. Forecasting gob gas vent hole production performances using intelligent computing methods for optimum methane control in longwall coal mines [J]. International Journal of Coal Geology, 2009, 79(4): 131–144.

    Article  Google Scholar 

  11. FENG Xiao-ping. Computer simulation of determining the location of the high temperature point in worked out section of coal mines [J]. Journal of Huainan Mining Institute, 1995, 15(1): 36–41. (in Chinese)

    Google Scholar 

  12. LI Zong-xiang, WU Qiang, XIAO Ya-ning. Numerical simulation of coupling mechanism of coal spontaneous combustion and gas effusion in goaf [J]. Journal of China University of Mining & Technology, 2008, 37(1): 38–42. (in Chinese)

    Google Scholar 

  13. TARABA B, MICHALEC Z. Effect of longwall face advance rate on spontaneous heating process in the gob area—CFD modeling [J]. Fuel, 2011, 90(8): 2790–2797.

    Article  Google Scholar 

  14. TANG Ming-yun. Study offire source localization technology in excavate coal area based on temperature field method [D]. Huainan: Anhui University of Science & Technology, 2005. (in Chinese)

    Google Scholar 

  15. KRISHNASWAMY S, AGARWAL P K, GUNN R D. Low-temperature oxidation of coal. 3. Modelling spontaneous combustion in coal stockpiles [J]. Fuel, 1996, 75(3): 353–362.

    Article  Google Scholar 

  16. YUAN Li-ming, SMITH A C. Numerical study on effects of coal properties on spontaneous heating in longwall gob areas [J]. Fuel, 2008, 87(15): 3409–3419.

    Article  Google Scholar 

  17. YUAN Li-ming, SMITH A C. CFD modeling of spontaneous heating in a large-scale coal chamber [J]. Journal of Loss Prevention in the Process Industries, 2009, 22(4): 426–433.

    Article  Google Scholar 

  18. SENSOGUT C, KAUFMAN M, PETIT E. An approach to the modeling of spontaneous combustion in the goaf [J]. The Journal of the South African Institute of Mining and Metallurgy, 2002, 102(5): 311–314.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Wang  (王刚).

Additional information

Foundation item: Project(2012BAK04B05) supported by the National Science and Technology Support Program during the Twelfth Five-year Plan Period, China; Project(51174113) supported by the National Natural Science Foundation of China; (2012YQ240127) the National Key Scientific Instrument and Equipment Development Project, China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, G., Luo, Hz., Liang, Yt. et al. Temperature field simulation of gob influenced by atmospheric pressure. J. Cent. South Univ. 22, 4366–4371 (2015). https://doi.org/10.1007/s11771-015-2985-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-015-2985-9

Key words

Navigation