Skip to main content
Log in

In vitro corrosion behavior and cytotoxicity property of magnesium matrix composite with chitosan coating

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Mg-6%Zn-10%β-Ca3(PO4)2 composite was prepared through powder metallurgy methods with different chitosan coatings on its surface. The properties of the chitosan coatings on the surface of Mg-6%Zn-10%β-Ca3(PO4)2 composite, such as the adhesion ability, the corrosion behavior and the cytotoxicity properties, were investigated, and the microstructure of the chitosan coating was observed by scanning electron microscope (SEM). The results show that chitosan coating improves the corrosion resistance of the magnesium composite specimens significantly. Mg-6%Zn-10%β-Ca3(PO4)2 composite specimens exhibit good corrosion resistance and low pH values in simulated body fluid (SBF) at 37 °C in the immersion test with 7-layer chitosan coating whose relative molecular mass is 30×104 Da. The cytotoxicity tests indicate that Mg-6%Zn-10%β-Ca3(PO4)2 with chitosan coating is nontoxic with a cytotoxicity grade of zero against L-929 cells, which is better than that of uncoated composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. HERMAWAN H, DUBE D, MANTOVANI D. Developments in metallic biodegradable stents [J]. Acta Biomaterialia, 2010, 6(5): 1693–1697.

    Article  Google Scholar 

  2. HORNBERGER H, VIRTANEN S, BOCCACCINI A R. Biomedical coatings on magnesium alloys-A review [J]. Acta Biomaterialia, 2012, 8(7): 2442–2455.

    Article  Google Scholar 

  3. YU Kun, CHEN Liang-jian, ZHAO Jun, LI Shao-jun, DAI Yi-long, HUANG Qiao, YU Zhi-ming. In vitro corrosion behavior and in vivo biodegradation of biomedical β-Ca3(PO4)2/Mg-Zn composites [J]. Acta Biomaterialia, 2012, 8(7): 2845–2855.

    Article  Google Scholar 

  4. WONG H M, YEUNG K, LAM K O, TAM V, CHU P K, LUK K, CHEUNG K. A biodegradable polymer-based coating to control the performance of magnesium alloy orthopaedic implants [J]. Biomaterials, 2010, 31(8): 2084–2096.

    Article  Google Scholar 

  5. INOUE H, SUGAHARA K, YAMAMOTO A, TSUBAKINO H. Corrosion rate of magnesium and its alloys in buffered chloride solutions [J]. Corrosion Science, 2003, 44(3): 603–610.

    Article  Google Scholar 

  6. NG W F, CHIU K Y, CHENG F T. Effect of pH on the in vitro corrosion rate of magnesium degradable implant material [J]. Materials Science and Engineering: C, 2010, 30(6): 898–903.

    Article  Google Scholar 

  7. ZAINAL ABIDIN N I, ROLFE B, OWEN H, MALISANO J, MARTIN D, HOFSTETTER J, UGGOWITZER P J, ATRENS A. The in vivo and in vitro corrosion of high-purity magnesium and magnesium alloys WZ21 and AZ91 [J]. Corrosion Science, 2013, 75(0): 354–366.

    Article  Google Scholar 

  8. SONG Guang-ling. Control of biodegradation of biocompatible magnesium alloys [J]. Corrosion Science, 2007, 49(4): 1696–1701

    Article  Google Scholar 

  9. KANNAN M B, RAMAN R. In vitro degradation and mechanical integrity of calcium-containing magnesium alloys in modified-simulated body fluid [J]. Biomaterials, 2008, 29(15): 2306–2314.

    Article  Google Scholar 

  10. KANNAN M B, WALLIPA O. Potentiostatic pulse-deposition of calcium phosphate on magnesium alloy for temporary implant applications-An in vitro corrosion study [J]. Materials Science & Engineering C-Materials for Biological Applications, 2013, 33(2): 675–679.

    Article  Google Scholar 

  11. YANG J, CUI F, LEE I S, WANG X. Plasma surface modification of magnesium alloy for biomedical application [J]. Surface and Coatings Technology, 2010, 205(Supplement 1): S182–S187.

    Article  Google Scholar 

  12. HU Ren, LIN Chang-jian, SHI Hai-yan, WANG Hui. Electrochemical deposition mechanism of calcium phosphate coating in dilute Ca-P electrolyte system [J]. Materials Chemistry and Physics, 2009, 115(2/3): 718–723.

    Article  Google Scholar 

  13. SHI P, NG W F, WONG M H, CHENG F T. Improvement of corrosion resistance of pure magnesium in Hanks’ solution by microarc oxidation with sol-gel TiO2 sealing [J]. Journal of Alloys and Compounds, 2009, 469(1/2): 286–292.

    Article  Google Scholar 

  14. ABDAL-HAY A, BARAKAT N A M, LIM J K. Hydroxyapatite-doped poly(lactic acid) porous film coating for enhanced bioactivity and corrosion behavior of AZ31 Mg alloy for orthopedic applications [J]. Ceramics International, 2013, 39(1): 183–195.

    Article  Google Scholar 

  15. BUMGARDNER J D, WISER R, GERARD P D, BERGIN P, CHESTNUTT B, MARINI M, RAMSEY V, ELDER S H, GILBERT J A. Chitosan: Potential use as a bioactive coating for orthopaedic and craniofacial/dental implants [J]. Journal of Biomaterials Science, Polymer Edition, 2003, 14(5): 429–438.

    Article  Google Scholar 

  16. DI MARTINO A, SITTINGER M, RISBUD M V. Chitosan: A versatile biopolymer for orthopaedic tissue-engineering [J]. Biomaterials, 2005, 26(30): 5983–5990.

    Article  Google Scholar 

  17. SHE Zhen-ding, JIN Chen-rui, HUANG Zhi, ZHANG Bo-feng, FENG Qing-ling, XU Ying-xin. Silk fibroin/chitosan scaffold: Preparation, characterization, and culture with HepG2 cell [J]. Journal of Materials Science: Materials in Medicine, 2008, 19(20): 3545–3553.

    Google Scholar 

  18. GEBHARDT F, SEUSS S, TURHAN M C, HORNBERGER H, VIRTANEN S, BOCCACCINI A R. Characterization of electrophoretic chitosan coatings on stainless steel [J]. Materials Letters, 2012, 66(1): 302–304.

    Article  Google Scholar 

  19. CARNEIRO J, TEDIM J, FERNANDES S C M, FREIRE C S R, GANDINI A, FERREIRA M G S, ZHELUDKEVICH M L. Functionalized chitosan-based coatings for active corrosion protection [J]. Surface and Coatings Technology, 2013, 226: 51–59.

    Article  Google Scholar 

  20. DAVIS J R. Handbook of materials for medical devices [M]. Materials Park, OH: ASM international, 2006: 136–181.

    Google Scholar 

  21. KIRKLAND N T, BIRBILIS N, STAIGER M P. Assessing the corrosion of biodegradable magnesium implants: A critical review of current methodologies and their limitations [J]. Acta Biomaterialia, 2012, 8(3): 925–936.

    Article  Google Scholar 

  22. SONG G L, ATRENS A, STJOHN D H, NAIRN J, LI Y. The electrochemical corrosion of pure magnesium in 1 N NaCl [J]. Corrosion Science, 1997, 39(5): 855–875.

    Article  Google Scholar 

  23. GU Xue-nan, ZHENG Yu-feng, CHENG Yan, ZHONG Sheng-ping, XI Ting-fei. In vitro corrosion and biocompatibility of binary magnesium alloys [J]. Biomaterials, 2009, 30(4): 484–498.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kun Yu  (余琨).

Additional information

Foundation item: Project(2012zzts068) supported by the Fundamental Research Funds for the Central Universities of Central South University, China; Project(2010fj3091) supported by the Open Funding of State Key Laboratory of Powder Metallurgy and Science & Technology Foundation, China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, Yl., Yu, K., Chen, Lj. et al. In vitro corrosion behavior and cytotoxicity property of magnesium matrix composite with chitosan coating. J. Cent. South Univ. 22, 829–834 (2015). https://doi.org/10.1007/s11771-015-2589-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-015-2589-4

Key words

Navigation