Skip to main content
Log in

Ni-Doped ZnO-Chitin Composites for Anti-Corrosive Coating on Zn Alloy in Simulated Body Fluid Solution

  • Published:
Journal of Bio- and Tribo-Corrosion Aims and scope Submit manuscript

Abstract

Application of biopolymers as biomaterials has greatly impacted the development of modern medicine. Specifically, biopolymers have a lot of applications in biomedical field because of its capability to tie through bone and soft tissues. Present study shows Zn alloy improves biocompatibility and the corrosion resistance ability when it is coated with Chitin-Ni-doped ZnO biocomposite material. Here, the electrochemical corrosion behavior of coated Zn alloy is examined in Simulated body fluid (SBF) solution and the concentration of Ni doped ZnO is investigated in Chitin-Ni doped ZnO biocomposites. To study the structural properties and to the presence of different Functional groups in coated materials X-ray diffraction (XRD) and Fourier transform infrared spectroscopy with KBr pellets (KBr-FTIR) techniques were used. Scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDAX) techniques were used to understand the surface morphology with elemental analysis of Chitin-Ni doped ZnO biocomposite material. The chemical composition of Chitin and Ni/ZnO in Chitin-Ni doped ZnO biocomposites were examined by XPS studies. AFM and the contact angle measurement shows that Chitin-Ni doped ZnO biocomposites coating improves anticorrosion performance by enhancing the surface roughness and hydrophilic nature of Zn alloy. The Electrochemical analysis of Zn alloy was performed to evaluate corrosion resistance in SBF solution for 24 h. It shows a decreasing trend in the current density with increase in corrosion resistance and the corrosion potential which shifts towards the positive direction from potentiodynamic polarization studies. Electrochemical impedance spectroscopy (EIS) study reveals a good capacitor behavior and high resistance value for Chitin-Ni doped ZnO-coated Zn alloy substrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Bowen PK, Drelich J, Goldman J (2013) Zinc exhibits ideal physiological corrosion behavior for bioabsorbable stents. Adv Mater 25:2577–2582. https://doi.org/10.1002/adma.201300226

    Article  CAS  Google Scholar 

  2. Murni NS, Dambatta MS, Yeap SK et al (2015) Cytotoxicity evaluation of biodegradable Zn-3Mg alloy toward normal human osteoblast cells. Mater Sci Eng C 49:560–566. https://doi.org/10.1016/j.msec.2015.01.056

    Article  CAS  Google Scholar 

  3. Li H, Zheng Y, Qin L (2014) Progress of biodegradable metals. Prog Nat Sci Mater Int 24:414–422. https://doi.org/10.1016/j.pnsc.2014.08.014

    Article  CAS  Google Scholar 

  4. Purnama A, Hermawan H, Mantovani D (2014) Biodegradable metal stents: a focused review on materials and clinical studies. J Biomater Tissue Eng 4:1–6. https://doi.org/10.1166/jbt.2014.1263

    Article  Google Scholar 

  5. Yang H, Wang C, Liu C et al (2017) Evolution of the degradation mechanism of pure zinc stent in the one-year study of rabbit abdominal aorta model. Biomaterials 145:92–105. https://doi.org/10.1016/j.biomaterials.2017.08.022

    Article  CAS  Google Scholar 

  6. Törne K, Larsson M, Norlin A, Weissenrieder J (2016) Degradation of zinc in saline solutions, plasma, and whole blood. J Biomed Mater Res Part B 104:1141–1151. https://doi.org/10.1002/jbm.b.33458

    Article  CAS  Google Scholar 

  7. Zhang S, Zhang X, Zhao C et al (2010) Research on an Mg-Zn alloy as a degradable biomaterial. Acta Biomater 6:626–640. https://doi.org/10.1016/j.actbio.2009.06.028

    Article  CAS  Google Scholar 

  8. Li HF, Xie XH, Zheng YF et al (2015) Development of biodegradable Zn-1X binary alloys with nutrient alloying elements Mg, Ca and Sr. Sci Rep 5:1–14. https://doi.org/10.1038/srep10719

    Article  Google Scholar 

  9. Chandra RK (1984) Excessive intake of zinc impairs immune responses. JAMA J Am Med Assoc 252:1443–1446. https://doi.org/10.1001/jama.1984.03350110043027

    Article  CAS  Google Scholar 

  10. Martins R, Nathan A, Barros R et al (2011) Complementary metal oxide semiconductor technology with and on paper. Adv Mater 23:4491–4496. https://doi.org/10.1002/adma.201102232

    Article  CAS  Google Scholar 

  11. MacDonald RS (2000) The role of zinc in growth and cell proliferation. J Nutr 130(5):1500S–1508S. https://doi.org/10.1093/jn/130.5.1500s

    CAS  Google Scholar 

  12. Lansdown ABG, Mirastschijski U, Stubbs N et al (2007) Zinc in wound healing: theoretical, experimental, and clinical aspects. Wound Repair Regen 15:2–16

    Google Scholar 

  13. Jacob J, Haponiuk JT, Thomas S, Gopi S (2018) Biopolymer based nanomaterials in drug delivery systems: a review. Mater Today Chem 9:43–55. https://doi.org/10.1016/j.mtchem.2018.05.002

    Article  CAS  Google Scholar 

  14. Oh JK, Lee DI, Park JM (2009) Biopolymer-based microgels/nanogels for drug delivery applications. Prog Polym Sci 34:1261–1282. https://doi.org/10.1016/j.progpolymsci.2009.08.001

    Article  CAS  Google Scholar 

  15. Suner SS, Sahiner M, Sengel SB et al (2018) Responsive biopolymer-based microgels/nanogels for drug delivery applications. Elsevier Ltd, Amsterdam

    Google Scholar 

  16. Rebelo R, Fernandes M, Fangueiro R (2017) Biopolymers in medical implants: a brief review. Proc Eng 200:236–243. https://doi.org/10.1016/j.proeng.2017.07.034

    Article  CAS  Google Scholar 

  17. Degeratu C (2014) Biopolymer based structures for biological tissue reconstruction Cristinel-Nicolae DEGERATU Structures de biopolymères pour la reconstruction de tissus biologiques Biopolymer based structures for biological tissue reconstruction

  18. Bressan E, Favero V, Gardin C et al (2011) Biopolymers for hard and soft engineered tissues: application in odontoiatric and plastic surgery field. Polymers (Basel) 3:509–526. https://doi.org/10.3390/polym3010509

    Article  CAS  Google Scholar 

  19. Jaganathan SK, Supriyanto E, Murugesan S et al (2014) Biomaterials in cardiovascular research: applications and clinical implications. Biomed Res Int. https://doi.org/10.1155/2014/459465

    Article  Google Scholar 

  20. Ramesan MT, Siji C, Kalaprasad G et al (2018) Effect of silver doped zinc oxide as nanofiller for the development of biopolymer nanocomposites from chitin and cashew gum. J Polym Environ 26:2983–2991. https://doi.org/10.1007/s10924-018-1187-6

    Article  CAS  Google Scholar 

  21. Abolghassem S, Molaei S, Javanshir S (2019) Preparation of α-chitin-based nanocomposite as an effective biocatalyst for microwave aided domino reaction. Heliyon 5:e02036. https://doi.org/10.1016/j.heliyon.2019.e02036

    Article  Google Scholar 

  22. Feng M, Lu X, Jiang K et al (2018) One-step preparation of an antibacterial chitin/Zn composite from shrimp shells using urea-Zn(OAc)2·2H2O aqueous solution. Green Chem 20:2212–2217. https://doi.org/10.1039/c8gc00767e

    Article  CAS  Google Scholar 

  23. Cader Mhd Haniffa MA, Ching YC, Abdullah LC et al (2016) Review of bionanocomposite coating films and their applications. Polymers (Basel) 8:1–33. https://doi.org/10.3390/polym8070246

    Article  CAS  Google Scholar 

  24. Göpferich A, Langer R (1993) Modeling of polymer erosion. Macromolecules 26:4105–4112. https://doi.org/10.1021/ma00068a006

    Article  Google Scholar 

  25. Zhang Z, Kuijer R, Bulstra SK et al (2006) The in vivo and in vitro degradation behavior of poly(trimethylene carbonate). Biomaterials 27:1741–1748. https://doi.org/10.1016/j.biomaterials.2005.09.017

    Article  CAS  Google Scholar 

  26. Abe K, Ifuku S, Kawata M (2014) Preparation of tough hydrogels based on b -chitin nanofibers via NaOH treatment. Cellulose 21:535–540. https://doi.org/10.1007/s10570-013-0095-0

    Article  CAS  Google Scholar 

  27. Chem JM, Chang C, Chen S, Zhang L (2011) Novel hydrogels prepared via direct dissolution of chitin at low temperature: structure and biocompatibility. J Mater Chem 21:3865–3871. https://doi.org/10.1039/c0jm03075a

    Article  CAS  Google Scholar 

  28. Jayakumar R, Prabaharan M, Nair SV, Tamura H (2010) Novel chitin and chitosan nanofibers in biomedical applications. Biotechnol Adv 28:142–150. https://doi.org/10.1016/j.biotechadv.2009.11.001

    Article  CAS  Google Scholar 

  29. Cooper A, Zhong C, Kinoshita Y et al (2012) Self-assembled chitin nanofiber templates for artificial neural networks. J Mater Chem 22:3105–3109. https://doi.org/10.1039/c2jm15487k

    Article  CAS  Google Scholar 

  30. Rinaudo M (2006) Chitin and chitosan: properties and applications. Prog Polym Sci 31:603–632. https://doi.org/10.1016/j.progpolymsci.2006.06.001

    Article  CAS  Google Scholar 

  31. Hassanzadeh P, Kharaziha M, Nikkhah M et al (2013) Chitin nanofiber micropatterned flexible substrates for tissue engineering. J Mater Chem B 1:4217–4224. https://doi.org/10.1039/c3tb20782j

    Article  CAS  Google Scholar 

  32. Fan Y, Saito T, Isogai A (2010) Individual chitin nano-whiskers prepared from partially deacetylated a -chitin by fibril surface cationization. Carbohydr Polym 79:1046–1051. https://doi.org/10.1016/j.carbpol.2009.10.044

    Article  CAS  Google Scholar 

  33. Jiang Y, Song Y, Miao M et al (2015) Transparent nanocellulose hybrid films functionalized with ZnO nanostructures for UV-blocking. J Mater Chem C 3:6717–6724. https://doi.org/10.1039/c5tc00812c

    Article  CAS  Google Scholar 

  34. Marx KA (2003) Quartz crystal microbalance: a useful tool for studying thin polymer films and complex biomolecular systems at the solution—surface interface. Biomacromol 4:1099–1120

    CAS  Google Scholar 

  35. Mohanty S, Nayak SK (2016) Polyvinyl alcohol-modified pithecellobium clypearia benth herbal residue fiberpolypropylene composites. Polym Compos 37:915–924

    Google Scholar 

  36. Ramesan MT, Nidhisha V, Jayakrishnan P (2017) Synthesis, characterization and conducting properties of novel poly (vinyl cinnamate)/zinc oxide nanocomposites via in situ polymerization. Mater Sci Semicond Process 63:253–260. https://doi.org/10.1016/j.mssp.2017.02.027

    Article  CAS  Google Scholar 

  37. Yadollahi M, Farhoudian S, Barkhordari S et al (2016) Facile synthesis of chitosan/ZnO bio-nanocomposite hydrogel beads as drug delivery systems. Int J Biol Macromol 82:273–278. https://doi.org/10.1016/j.ijbiomac.2015.09.064

    Article  CAS  Google Scholar 

  38. Lv S, Zhang K, Zhu L, Tang D (2019) ZIF-8-Assisted NaYF4:Yb, Tm@ZnO converter with exonuclease III-powered DNA walker for near-infrared light responsive biosensor. Anal Chem. https://doi.org/10.1021/acs.analchem.9b04710

    Article  Google Scholar 

  39. Wang S, Zhu B, Liu M et al (2019) Direct Z-scheme ZnO/CdS hierarchical photocatalyst for enhanced photocatalytic H2-production activity. Appl Catal B 243:19–26. https://doi.org/10.1016/j.apcatb.2018.10.019

    Article  CAS  Google Scholar 

  40. Rodlamul P, Tamura S, Imanaka N (2019) Effect of p- or n-type semiconductor on CO sensing performance of catalytic combustion-type CO gas sensor with CeO2-ZrO2-ZnO based catalyst. Bull Chem Soc Jpn 92:585–591. https://doi.org/10.1246/bcsj.20180284

    Article  CAS  Google Scholar 

  41. Kallappa D, Venkatarangaiah VT (2018) Synthesis of CeO2 doped ZnO nanoparticles and their application in Zn-composite coating on mild steel. Arab J Chem 13:2309–2317. https://doi.org/10.1016/j.arabjc.2018.04.014

    Article  CAS  Google Scholar 

  42. Risbud MV, Bhonde RR (2000) Polyacrylamide-chitosan hydrogels: in vitro biocompatibility and sustained antibiotic release studies. Drug Deliv J Deliv Target Ther Agents 7:69–75. https://doi.org/10.1080/107175400266623

    Article  CAS  Google Scholar 

  43. Lin ZF, Wang Y, Zhang D, Li XB (2016) Corrosion resistance research of ZnO/polyelectrolyte composite film. Int J Electrochem Sci 11:8512–8519. https://doi.org/10.20964/2016.10.37

  44. Deyá MC, Romagnoli R, Romagnoli R, Del Amo B (2004) The influence of zinc oxide on the anticorrosive behaviour of eco—friendly paints. Corros Rev 22:1–18. https://doi.org/10.1515/CORRREV.2004.22.1.1

    Article  Google Scholar 

  45. Chandrappa KG, Venkatesha TV, Nayana KO, Punithkumar MK (2012) Generation of nanocrystalline NiO particles by solution combustion method and its Zn-NiO composite coating for corrosion protection. Mater Corros 63:445–455. https://doi.org/10.1002/maco.201005966

    Article  CAS  Google Scholar 

  46. Müller L, Müller FA (2006) Preparation of SBF with different HCO3- content and its influence on the composition of biomimetic apatites. Acta Biomater 2:181–189. https://doi.org/10.1016/j.actbio.2005.11.001

    Article  Google Scholar 

  47. Arthanari S, KwangSeon S, Rajendran N (2016) Influence of bicarbonate concentration on the conversion layer formation onto AZ31 Magnesium alloy and its electrochemical corrosion behaviour in simulated body fluid. RSC Adv 6:49910–49922. https://doi.org/10.1039/C6RA08478H

    Article  CAS  Google Scholar 

  48. GEARY SAAL, Metals (1957) Electrochemical polarization. J Electrochem Soc 104:56–63. https://doi.org/10.1149/1.2428496

    Article  Google Scholar 

  49. Huang VM-W, Vivier V, Orazem ME et al (2007) The apparent constant-phase-element behavior of an ideally polarized blocking electrode. J Electrochem Soc 154:C81. https://doi.org/10.1149/1.2398882

    Article  CAS  Google Scholar 

  50. Hsu CH, Mansfeld F (2001) Concernng the conversion of the constant phase element parameter Y0into a capacitance. Corrosion 57:747–748. https://doi.org/10.5006/1.3280607

    Article  CAS  Google Scholar 

  51. Marchessault RH, Pearson FG, Liang CY (1960) Infrared spectra of crystalline polysaccharides. Biochim Biophys Acta 45:499–507. https://doi.org/10.1016/0006-3002(60)91486-4

    Article  CAS  Google Scholar 

  52. Kumirska J, Czerwicka M, Kaczyński Z et al (2010) Application of spectroscopic methods for structural analysis of chitin and chitosan. Mar Drugs 8:1567–1636. https://doi.org/10.3390/md8051567

    Article  CAS  Google Scholar 

  53. Ashwin Kumar N, Sanoj Rejinold N, Anjali P et al (2013) Preparation of chitin nanogels containing nickel nanoparticles. Carbohydr Polym 97:469–474. https://doi.org/10.1016/j.carbpol.2013.05.009

    Article  CAS  Google Scholar 

  54. Sohi MH, Jalali M (2003) Study of the corrosion properties of zinc-nickel alloy electrodeposits before and after chromating. J Mater Process Technol 138:63–66. https://doi.org/10.1016/S0924-0136(03)00050-5

    Article  CAS  Google Scholar 

  55. Blawert C, Bala Srinivasan P (2010) Plasma electrolytic oxidation treatment of magnesium alloys. Surf Eng Light Alloy Alum Magnes Titan Alloy. https://doi.org/10.1533/9781845699451.2.155

    Article  Google Scholar 

  56. Nuss J, Wedig U, Kirfel A, Jansen M (2010) The structural anomaly of zinc: Evolution of lattice constants and parameters of thermal motion in the temperature range of 40 to 500 K. Z Anorg und Allg Chem 636:309–313. https://doi.org/10.1002/zaac.200900460

    Article  CAS  Google Scholar 

  57. McMurdie HF, Evans EH, Morris MC et al (1986) Standard X-ray diffraction powder patterns from the JCPDS research associateship. Powder Diffr. https://doi.org/10.1017/S0885715600011593

    Article  Google Scholar 

  58. Vogler EA (2013) Surface modification for biocompatibility. engineered biomimicry. Elsevier Inc, Amsterdam, pp 189–220

    Google Scholar 

  59. Drelich J, Chibowski E, Meng DD, Terpilowski K (2011) Hydrophilic and superhydrophilic surfaces and materials. Soft Matter 7:9804–9828. https://doi.org/10.1039/c1sm05849e

    Article  CAS  Google Scholar 

  60. Rudolph A, Teske M, Illner S et al (2015) Surface modification of biodegradable polymers towards better biocompatibility and lower thrombogenicity. PLoS ONE 10:1–17. https://doi.org/10.1371/journal.pone.0142075

    Article  CAS  Google Scholar 

  61. Lusty JR, Chan HSO, Khor E, Peeling J (1985) The synthesis and characterisation of some xanthine complexes: evidence for the existence of oxygen involvement using O(6) and O(2). Inorg Chim Acta 106:209–218. https://doi.org/10.1016/S0020-1693(00)82271-9

    Article  CAS  Google Scholar 

  62. Wayne J (1977) X-ray photoelectron spectra and electronic structure of some diamine compounds. J Electron Spectrosc Relat Phenom 11:123–127

    Google Scholar 

  63. Arfelli M, Cossu G, Mattogno G et al (1990) X-ray spectroscopic characterization of Cu2+-phenanthroline complexes intercalated in α-zirconium phosphate. J Incl Phenom Mol Recognit Chem 9:161–170. https://doi.org/10.1007/BF01041260

    Article  CAS  Google Scholar 

  64. Barbaux Y, Dekiouk M, Le Maguer D et al (1992) Bulk and surface analysis of a Fe-P-O oxydehydrogenation catalyst. Appl Catal A 90:51–60. https://doi.org/10.1016/0926-860X(92)80247-A

    Article  CAS  Google Scholar 

  65. Landis WJ, Martin JR (1984) X-ray photoelectron spectroscopy applied to gold-decorated mineral standards of biological interest. J Vac Sci Technol A 2:1108–1111. https://doi.org/10.1116/1.572680

    Article  CAS  Google Scholar 

  66. Stipp SLS, Hochella MF (1991) Structure and bonding at the calcite surface as observed with X-ray photoelectron spectroscopy (XPS) and (LEED). Geochim Cosmochim Acta 55:1723–1736

    CAS  Google Scholar 

Download references

Acknowledgements

Deepti Jain greatfully acknowledge financial support from the Dr. Ramdas Pai Scholarship, Manipal University Jaipur, India (Ref: DOR/RPSA/2018-19/08-06) and Shubhra Pareek from the UGC-DAE CSR, Kalpakkam, India (Grant Ref. No: CSR-KN/CRS-96) for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debasis Behera.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (DOCX 84 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jain, D., Pareek, S., Chattopadhyay, S. et al. Ni-Doped ZnO-Chitin Composites for Anti-Corrosive Coating on Zn Alloy in Simulated Body Fluid Solution. J Bio Tribo Corros 6, 113 (2020). https://doi.org/10.1007/s40735-020-00411-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40735-020-00411-5

Keywords

Navigation