Skip to main content
Log in

Performances of lithium manganese oxide prepared by hydrothermal process

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

A simple hydrothermal process followed by heat treatment was applied to the preparation of spinel Li1.05Mn1.95O4. In this process, electrolytic manganese dioxide (EMD) and LiOH·H2O were used as starting materials. The physiochemical properties of the synthesized samples were investigated by thermogravimetry-differential scanning calorimetry (TG-DSC), X-ray diffractometry (XRD), and scanning electronic microscopy (SEM). The results show that the hydrothermally synthesized precursor is an essential amorphous. The precursor can be easily transferred to spinel powders with a homogeneous structure and a regularly-shaped morphology by heat treatment. Li1.05Mn1.95O4 powder obtained by heat treating the precursor at 430 °C for 12 h and then calcining at 800 °C for 12 h shows an excellent cycling performance with an initial charge capacity of 118.2 mA·h·g−1 obtained at 0.5C rate and 93.8% of its original value retained after 100 cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. WINTER M, BESENHARD J O, SPAHR M E, NOV K P. Insertion electrode materials for rechargeable lithium batteries [J]. Advanced Materials, 1998, 10(10): 725–763

    Article  Google Scholar 

  2. DAHN J R, von SACKEN U, MICHAL C A. Structure and electrochemistry of Liy NiO2 and a new Li2NiO2 phase with the Ni(OH)2 structure [J]. Solid State Ionics, 1990, 44(1/2): 87–97.

    Article  Google Scholar 

  3. DING Y L, XIE J, CAO G S, ZHU T J, YU H M, ZHAO X B. Enhanced elevated-temperature performance of Al-doped single-crystalline LiMn2O4 nanotubes as cathodes for lithium ion batteries [J]. The Journal of Physical Chemistry C, 2011, 115(19): 9821–9825

    Article  Google Scholar 

  4. HASSOUN J, LEE K-S, SUN Y-K, SCROSATI B. An advanced lithium ion battery based on high performance electrode materials [J]. Journal of the American Chemical Society, 2011, 133(9): 3139–3143

    Article  Google Scholar 

  5. NISHIDA Y, NAKANE K, SATOH T. Synthesis and properties of gallium-doped LiNiO2 as the cathode material for lithium secondary batteries [J]. Journal of Power Sources, 1997, 68(2): 561–564

    Article  Google Scholar 

  6. ARAI H, OKADA S, OHTSUKA H, ICHIMURA M, YAMAKI J. Characterization and cathode performance of Li1-x Ni1+x O2 prepared with the excess lithium method [J]. Solid State Ionics, 1995, 80(3/4): 261–269.

    Article  Google Scholar 

  7. OHZUKU T, UEDA A, KOUGUCHI M. Synthesis and characterization of LiAl1/4Ni3/4O2 (R[overline 3]m) for lithium-ion (shuttlecock) batteries [J]. Journal of the Electrochemical Society, 1995, 142(12): 4033–4039.

    Article  Google Scholar 

  8. ARAI H, OKADA S, SAKURAI Y, YAMAKI J I. Thermal behavior of Li1−y NiO2 and the decomposition mechanism [J]. Solid State Ionics, 1998, 109(3/4): 295–302.

    Article  Google Scholar 

  9. BROUSSELY M, PERTON F, BIENSAN P, BODET J M, LABAT J, LECERF A, DELMAS C, ROUGIER A, PERES J P. LixNiO2, a promising cathode for rechargeable lithium batteries [J]. Journal of Power Sources, 1995, 54(1): 109–114.

    Article  Google Scholar 

  10. LE GOFF P, BAFFIER N, BACH S, PEREIRA-RAMOS J P. Synthesis, ion exchange and electrochemical properties of lamellar phyllomanganates of the birnessite group [J]. Materials Research Bulletin, 1996, 31(1): 63–75.

    Article  Google Scholar 

  11. THACKERAY M M. Manganese oxides for lithium batteries [J]. Progress in Solid State Chemistry, 1997, 25(1/2): 1–71.

    Article  Google Scholar 

  12. KANG K, MENG Y S, br GER J, GREY C P, CEDER G. Electrodes with high power and high capacity for rechargeable lithium batteries [J]. Science, 2006, 311(5763): 977–980.

    Article  Google Scholar 

  13. KIM D K, MURALIDHARAN P, LEE H-W, RUFFO R, YANG Y, CHAN C K. Spinel LiMn2O4 nanorods as lithium ion battery cathodes [J]. Nano Letters, 2008, 8(11): 3948–3952.

    Article  Google Scholar 

  14. IQBAL M J, ZAHOOR S. Synthesis and characterization of nanosized lithium manganate and its derivatives [J]. Journal of Power Sources, 2007, 165(1): 393–397.

    Article  Google Scholar 

  15. SINHA N N, RAGUPATHY P, VASAN H N, MUNICHANDRAIAH N. Electrochemical characterization of submicron size particles of LiMn2O4 in aqueous electrolytes [J]. International Journal of Electrochemical Science, 2008, 3: 691–710.

    Google Scholar 

  16. LUO J Y, XIONG H M, XIA Y Y. LiMn2O4 nanorods, nanothorn microspheres, and hollow nanospheres as enhanced cathode materials of lithium ion battery [J]. The Journal of Physical Chemistry C, 2008, 112(31): 12051–12057.

    Article  Google Scholar 

  17. CUI T H N, HAN Y, KANG X. Preparation and electrochemical properties of LiMn2O4 by a rheological-phase-assisted microwave synthesis method [J]. Inorg Mater, 2008, 44: 542–548.

    Article  Google Scholar 

  18. BYRAPPA K, ADSCHIRI T. Hydrothermal technology for nanotechnology [J]. Progress in Crystal Growth and Characterization of Materials, 2007, 53(2): 117–166.

    Article  Google Scholar 

  19. LI Y J, KONG L, XI X M, LI W J, LI G L, LI J Q. Hydrothermal preparation and characterization of LiMn2O4 for Li-ion battery application [C]// Proceedings of the 51st Annual Conference of Metallurgists of CIM (COM 2012). Niagara Falls, Ontario, Canada, 2012: 399–407.

    Google Scholar 

  20. SCHILLING O, DAHN J R. Fits of the γ-MnO2 structure model to disordered manganese dioxides [J]. Journal of Applied Crystallography, 1998, 31(3): 396–406.

    Article  Google Scholar 

  21. YAMADA A, MIURA K, HINOKUMA K, TANAKA M. Synthesis and structural aspects of LiMn2Oδ as a cathode for rechargeable lithium batteries [J]. ChemInform, 1995, 26(47): 2149–2156.

    Google Scholar 

  22. JIANG C H, DOU S X, LIU H K, ICHIHARA M. Synthesis of spinel LiMn2O4 nanoparticles through one-step hydrothermal reaction [J]. Journal of Power Sources, 2007, 172(1): 410–415.

    Article  Google Scholar 

  23. THACKERAY M M, JOHNSON P J, de PICCIOTTO L A, BRUCE P G, GOODENOUGH J B. Electrochemical extraction of lithium from LiMn2O4 [J]. Materials Research Bulletin, 1984, 19(2): 179–187.

    Article  Google Scholar 

  24. YI T, DAI C, GAO K, HU X. Effects of synthetic parameters on structure and electrochemical performance of spinel lithium manganese oxide by citric acid-assisted sol-gel method [J]. Journal of Alloys and Compounds, 2006, 425(1/2): 343–347.

    Article  Google Scholar 

  25. HON Y M, FUNG K Z, LIN S P, HON M H. Effects of metal ion sources on synthesis and electrochemical performance of spinel LiMn2O4 using tartaric acid gel process [J]. Journal of solid state chemistry, 2002, 163(1): 231–238.

    Article  Google Scholar 

  26. HUNG F Y, LUI T S, LIAO H C. A study of nano-sized surface coating on LiMn2O4 materials [J]. Applied Surface Science, 2007, 253(18): 7443–7448.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yun-jiao Li  (李运姣).

Additional information

Foundation item: Project(50174058) supported by the National Natural Science Foundation of China; Project(2011A025) supported by the Glorious Laurel Scholar Program of Guangxi Zhuang Autonomous Region, China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kong, L., Li, Yj., Zhang, P. et al. Performances of lithium manganese oxide prepared by hydrothermal process. J. Cent. South Univ. 21, 1279–1284 (2014). https://doi.org/10.1007/s11771-014-2063-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-014-2063-8

Key words

Navigation