Skip to main content
Log in

Synthesis and ceramization of polycarbosilane containing beryllium

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Polycarbosilane containing beryllium (BPCS) precursors was prepared by the reaction of polycarbosilane (PCS) with beryllium acetylacetone (Be (acac)2). The analysis of structures and components of BPCS demonstrates that their main structures are basically the same as PCS. Ceramization of BPCS precursors shows that BPCS precursors are organic below 600 °C and inorganic at 800 °C. At 1400 °C, BPCS precursors convert into silicon carbide ceramics. The ceramization of different beryllium content precursors were studied, which show that beryllium plays an important role in the inhibition of crystalline grain growth of β-SiC at high temperature and it can adjust the dielectric constant of silicon carbide ceramics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. LEVINE S R, OPILA E J, HALBIG M C, KISER J D, SINGH M, SALEM J A. Evaluation of ultra-high temperature ceramics for aeropropulsion use [J]. Journal of the European Ceramic Society, 2002, 22: 2757–2767.

    Article  Google Scholar 

  2. TAKAHIRO N, TOMOHIRO I, YOSHIO H. Influence of polymer infiltration and pyrolysis process on mechanical strength of polycarbosilane-derived silicon carbide ceramics [J]. J Mater Sci, 2011, 46: 3046–3051.

    Article  Google Scholar 

  3. CUPTA R K, MISHRA R, TIWARI R K, RANJAN A, SAXENA A K. Studies on the rheological behavior of polycarbosilane part I: Effect of time, temperature and atmosphere [J]. Silicon, 2011, 3: 27–35

    Article  Google Scholar 

  4. MISHRA R, TIWATI R K, SAXENA A K. Synthesis of Fe-SiC nanowires via precursor route [J]. J Inorg Organomet Polym, 2009, 19: 223–227.

    Article  Google Scholar 

  5. TANG Xue-yuan, XU Yu-xi, YANG Da-xiang. SiO2/TiO2 fibers from titanium-modified polycarbosilane [J]. J Mater Sci, 2010, 45: 2670–2674.

    Article  Google Scholar 

  6. KISGIMOTO A, OKADA Y, HAYASHI H. Improvement of piezoresistance properties of silicon carbide ceramics through co-doping of aluminum nitride and nitrogen [J]. Ceramics International, 2008, 34: 845–848

    Article  Google Scholar 

  7. KITA K, NARISAWA M, NAKAHIRA A, MABUCHI H, SUGIMOTO M, YOSHIKAWA M. Synthesis and properties of ceramic fibers from polycarbosilane/polymethylphenylsiloxane polymer blends [J]. J Mater Sci, 2010, 45: 3397–3404.

    Article  Google Scholar 

  8. GUPTA R K, MISHRA R, MUKHOPADHYAY K, TIWARI R K, RANJAN A, SAXENA A K. A new technique for coating silicon carbide onto carbon nanotubes using a polycarbosilane precursor [J]. Silicon, 2009, 1(2): 125–129.

    Article  Google Scholar 

  9. IVANOVSKII A L, SHEIN I R, MAKURIN Y N, KIIKO V S, GORBUNOVA M A. Electronic structure and properties of beryllium oxide [J]. Inorganic Materials, 2009, 45(3): 223–234.

    Article  Google Scholar 

  10. AKISHIN G P, TURNAEV S K, VAISPAPIR V Y, GORBUNOVA M A, MAKURIN Y N, KIIKO V S, IVANOVSKII A L. Thermal conductivity of beryllium oxide ceramic [J]. Refractories and Industrial Ceramics, 2009, 50(6): 465–468

    Article  Google Scholar 

  11. GADZHIEV G G, ISMAILOV S M, KHAMIDOV M M. Thermal conductivity of silicon carbide ceramics doped with beryllium oxide [J]. Inorganic Materials, 2000, 36(2): 197–199.

    Article  Google Scholar 

  12. SUN Jing-jing, LI Jian-bao, ZHANG Bo. Current status of ceramics materials in electromagnetic wave absorbing [J]. Materials Engineering, 2003, 2: 43–47.

    Google Scholar 

  13. YANG Bing-chu, LI Wen-fang, HUANG Xiao-zhong. Synthesis and structural analysis of beryllium acetylacetonate [J]. Journal of Beijing University of Chemical Technology (Natural Science Edition), 2010, 37(4): 40–43.

    Google Scholar 

  14. DUAN Xi-dong, LI Wen-fang, ZHOU Shan. Synthesis of precursor of SiC ceramic containing beryllium [J]. Journal of Functional Materials, 2012, 43(12): 1647–1650.

    Google Scholar 

  15. YU Yu-xi, LI Xiao-dong, CAO Feng. Synthesis and ceramization of SiC ceramic precursor polyal uminocarbosilane [J]. Journal of the Chinese Ceramic Society, 2004, 32(4): 494–49

    Google Scholar 

  16. CHOLLON G, ALDACOURROU B, CAPES L, PAILLER R, NASLAIN R. Thermal behaviour of a polytitanocarbosilane derived fibre with a low oxygen content: The Tyranno Lox-E fibre [J]. J Mater Sci, 1998, 33: 901–911.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zuo-juan Du  (杜作娟).

Additional information

Foundation item: Project(51074193) supported by the National Natural Science Foundation of China; Projects(2011AA7024034, 2011AA7053016) supported by the National High Technology Research and Development Program of China; Project(LK0903) supported by State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, China

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, Xz., Zhou, S., Cheng, Y. et al. Synthesis and ceramization of polycarbosilane containing beryllium. J. Cent. South Univ. 21, 71–75 (2014). https://doi.org/10.1007/s11771-014-1917-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-014-1917-4

Key words

Navigation