Skip to main content
Log in

Back analysis of general slope under earthquake forces using upper bound theorem

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Long time monitoring is acquired to obtain the displacement data for displacement-based geotechnical material back analysis, and these data are hard to be measured under some special condition, such as earthquake. For a simple homogeneous slope, the position of a critical failure surface is determined by value of c/tan ϕ. Utilizing upper bound theorem of limit analysis, the external work rate and internal energy for normal slope under earthquake forces are given, and the formula for minimum safety factor is derived. On this basis, the equation of slip surface and the surface depth of a given position are solved. In this way, the strength parameter can be analyzed by known slip surface depth. For practical use, the surface depth for a given slope under varying strength parameter is presented. Finally, two examples are given to show its simplicity and effectiveness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. CHENG Y M, LANSIVAARA T, WEI W B. Two-dimensional slope stability analysis by limit equilibrium and strength reduction methods [J]. Computers and Geotechnics, 2007, 34(3): 137–150.

    Article  Google Scholar 

  2. YAVUZ M, IPHAR M, ONCE G. The optimum support design selection by using AHP method for the main haulage road in WLC Tuncbilek colliery [J]. Tunnelling and Underground Space Technology, 2008, 23(2): 111–119.

    Article  Google Scholar 

  3. YANG X L, WANG J M. Ground movement prediction for tunnels using simplified procedure [J]. Tunnelling and Underground Space Technology, 2011, 26(3): 462–471.

    Article  Google Scholar 

  4. YANG X L. Seismic passive pressures of earth structures by nonlinear optimization [J]. Archive of Applied Mechanics, 2011, 81(9): 1195–1202.

    Article  MATH  Google Scholar 

  5. YANG X L, HUANG F. Collapse mechanism of shallow tunnel based on nonlinear Hoek-Brown failure criterion [J]. Tunnelling and Underground Space Technology, 2011, 26(6): 686–691.

    Article  Google Scholar 

  6. FAKHIMI A, SALEHI D, MOJTABAI N. Numerical back analysis for estimation of soil parameters in the Resalat Tunnel project [J]. Tunnelling and Underground Space Technology, 2004, 19(1): 57–67.

    Article  Google Scholar 

  7. YAZDANI M, SHARIFZADEH M, KAMRANI K. Displacement-based numerical back analysis for estimation of rock mass parameters in Siah Bisheh powerhouse cavern using continuum and discontinuum approach [J]. Tunnelling and Underground Space Technology, 2012, 28(3): 41–48.

    Article  Google Scholar 

  8. KAVANAGH K T, CLOUGH R W. Finite element applications in the characterization of elastic solids [J]. International Journal of Solids and Structures, 1971, 7(1): 11–23.

    Article  MATH  Google Scholar 

  9. SAKURAI S, AKUTAGAWA S, TAKEUCHI K. Back analysis for tunnel engineering as a modern observational method [J]. Tunnelling and Underground Space Technology, 2003, 18(2/3): 185–196.

    Article  Google Scholar 

  10. DENG J H, LEE C F. Displacement back analysis for a steep slope at the three gorges project site [J]. International Journal of Rock Mechanics and Mining Sciences, 2001, 38(2): 259–268.

    Article  Google Scholar 

  11. YANG X L, ZOU J F. Cavity expansion analysis with non-linear failure criterion [J]. Proceedings of the Institution of Civil Engineers-Geotechnical Engineering, 2011, 164(1): 41–49.

    MathSciNet  Google Scholar 

  12. YANG X L, YIN J H. Slope equivalent Mohr-Coulomb strength parameters for rock masses satisfying the Hoek-Brown criterion [J]. Rock Mechanics and Rock Engineering, 2010, 43(4): 505–511.

    Article  MathSciNet  Google Scholar 

  13. HACK R, ALKEMA D, KRUSE G A. Influence of earthquakes on the stability of slopes [J]. Engineering Geology Slope Transport Processes and Hydrology, 2007, 91(1): 4–15.

    Google Scholar 

  14. RANDALL W J. Methods for assessing the stability of slopes during earthquakes-A retrospective [J]. Engineering Geology, 2011, 122(1/2): 43–50.

    Google Scholar 

  15. YANG X L. Seismic bearing capacity of a strip footing on rock slopes [J]. Canadian Geotechnical Journal, 2009, 46(8): 943–954.

    Article  Google Scholar 

  16. YANG X L. Seismic displacement of rock slopes with nonlinear Hoek-Brown failure criterion [J]. International Journal of Rock Mechanics and Mining Sciences, 2007, 44(6): 948–953.

    Article  Google Scholar 

  17. YANG X L. Upper bound limit analysis of active earth pressure with different fracture surface and nonlinear yield criterion [J]. Theoretical and Applied Fracture Mechanics, 2007, 47(1): 46–56.

    Article  Google Scholar 

  18. AUSILIO E, CONTE E, DENTE G. Seismic stability analysis of reinforced slopes [J]. Soil Dynamics and Earthquake Engineering, 2000, 19(3): 159–172.

    Article  Google Scholar 

  19. MICHALOWSKI R L. Soil reinforcement for seismic design of geotechnical structures [J]. Computers and Geotechnics, 1998, 23(1/2): 1–17.

    Article  Google Scholar 

  20. SONMEZ H, ULUSAY R, GOKCEOGLU C. A practical procedure for the back analysis of slope failures in closely jointed rock masses [J]. International Journal of Rock Mechanics and Mining Sciences, 1998, 35(2): 219–233.

    Article  Google Scholar 

  21. KAVAZANJIAN E Hanshin earthquake-reply [R]. Geotechnical Bulletin Board, NSF Earthquake Hazard Mitigation Program, 1995.

    Google Scholar 

  22. YANG X L, YIN J H. Estimation of seismic passive earth pressures with nonlinear failure criterion [J]. Engineering Structures, 2006, 28(3): 342–348.

    Article  Google Scholar 

  23. YANG X L, HUANG F, WANG J M. Modified image analytical solutions for ground displacement using nonuniform convergence model [J]. Journal of Central South University of Technology, 2011, 18(3): 859–865.

    Article  Google Scholar 

  24. CHEN W F. Limit analysis and soil plasticity [M]. Amsterdam: Elsevier Science, 1975: 23–38.

    Google Scholar 

  25. VARAS F, ALONSO E, ALEJANO LR, FDEZ-MANIN G. Study of bifurcation in the problem of unloading a circular excavation in a strain-softening material [J]. Tunnelling and Underground Space Technology, 2005, 20(4): 311–322.

    Article  Google Scholar 

  26. YANG X L, YIN J H. Slope stability analysis with nonlinear failure criterion [J]. Journal of Engineering Mechanics, 2004, 130(3): 267–273.

    Article  Google Scholar 

  27. YANG X L, HUANG F. Influences of strain softening and seepage on elastic and plastic solutions of circular openings in nonlinear rock masses [J]. Journal of Central South University of Technology, 2010, 17(3): 621–627.

    Article  Google Scholar 

  28. YANG X L, HUANG F. Stability analysis of shallow tunnels subjected to seepage with strength reduction theory [J]. Journal of Central South University of Technology, 2009, 16(6): 1001–1005.

    Article  Google Scholar 

  29. YANG X L, ZOU J F. Estimation of compaction grouting pressure in strain softening soils [J]. Journal of Central South University of Technology, 2009, 16(4): 653–657.

    Article  Google Scholar 

  30. YANG X L, HUANG F. Slope stability analysis considering joined influences of nonlinearity and dilation [J]. Journal of Central South University of Technology, 2009, 16(2): 292–296.

    Article  Google Scholar 

  31. WANG J, YAO L K, ARSHAD H. Analysis of earthquake-triggered failure mechanisms of slopes and sliding surfaces [J]. Journal of Mountain Science, 2010, (7): 282–290.

    Google Scholar 

  32. DENG D, LI L. Based on a new method of searching for sliding surface pseudo-static stability analysis of slope under earthquake [J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 31(1): 86–98. (in Chinese)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-bin Sun  (孙志彬).

Additional information

Foundation item: Project(2013CB036004) supported by the National Basic Research Program of China; Project(51178468) supported by the National Natural Science Foundation of China; Project(2013zzts047) supported by the Fundamental Research Funds for Central Universities, China

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, Zb., Liang, q. Back analysis of general slope under earthquake forces using upper bound theorem. J. Cent. South Univ. 20, 3274–3281 (2013). https://doi.org/10.1007/s11771-013-1851-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-013-1851-x

Key words

Navigation