Skip to main content
Log in

Upper bound solutions of stability factor of shallow tunnels in saturated soil based on strength reduction technique

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Based on the upper bound theorem of limit analysis, the factor of safety for shallow tunnel in saturated soil is calculated in conjunction with the strength reduction technique. To analyze the influence of the pore pressure on the factor of safety for shallow tunnel, the power of pore pressure is regarded as a power of external force in the energy calculation. Using the rigid multiple-block failure mechanism, the objective function for the factor of safety is constructed and the optimal solutions are derived by employing the sequential quadratic programming. According to the results of optimization calculation, the factor of safety of shallow tunnel for different pore pressure coefficients and variational groundwater tables are obtained. The parameter analysis shows that the pore pressure coefficient and the location of the groundwater table have significant influence on the factor of safety for shallow tunnel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. BISHOP A W. The use of the slip circle in the stability analysis of slopes [J]. Geotechnique, 1955, 5(1): 7–17.

    Article  MathSciNet  Google Scholar 

  2. HUANG M S, JIA C Q. Strength reduction FEM in stability analysis of soil slopes subjected to transient unsaturated seepage [J]. Computers and Geotechnics, 2009, 36(1): 93–101.

    Article  Google Scholar 

  3. ZHENG H, SUN G H, LIU D F. A practical procedure for searching critical slip surfaces of slopes based on the strength reduction technique [J]. Computers and Geotechnics, 2009, 36(1): 1–5.

    Article  Google Scholar 

  4. DAWSON E M, ROTH W H, DRESCHER A. Slope stability analysis by strength reduction [J]. Geotechnique, 1999, 49(6): 835–840.

    Article  Google Scholar 

  5. CHEN W F. Limit analysis and soil plasticity [M]. Elsevier Science: Amsterdam: 1975: 253–255.

  6. SNITBHAN N, CHEN W F. Elastic-plastic large deformation analysis of soil slopes [J]. Computers & Structures, 1978, 9(6): 567–577

    Article  MATH  Google Scholar 

  7. GRIFFITHS D V, LANE P A. Slope stability analysis by finite elements [J]. Geotechnique, 1999, 49(3): 387–403.

    Article  Google Scholar 

  8. KIM J K, LEE S R. An improved search strategy for the critical slip surface using finite element stress fields [J]. Computers and Geotechnics, 1997, 21(4): 295–313.

    Article  Google Scholar 

  9. YANG X L, YIN J H. Slope stability analysis with nonlinear failure criterion [J]. Journal of Engineering Mechanics, 2004, 130(3): 267–273.

    Article  Google Scholar 

  10. YANG X L, LI L, YIN J H. Seismic and static stability analysis for rock slopes by a kinematical approach [J]. Geotechnique, 2004, 54(8): 543–549.

    Article  Google Scholar 

  11. YANG X L, LI L, YIN J H. Stability analysis of rock slopes with a modified Hoek-Brown failure criterion [J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2004, 28(2): 181–190.

    Article  MATH  Google Scholar 

  12. YANG X L. Seismic displacement of rock slopes with nonlinear Hoek-Brown failure criterion [J]. International Journal of Rock Mechanics and Mining Sciences, 2007, 44(6): 948–953.

    Article  Google Scholar 

  13. LI A J, MERIFIELD R S, LYAMIN A V. Stability charts for rock slopes based on the Hoek-Brown failure criterion [J]. International Journal of Rock Mechanics and Mining Sciences, 2007, 44(5): 689–700.

    Google Scholar 

  14. YANG X L. Seismic passive pressures of earth structures by nonlinear optimization [J]. Archive of Applied Mechanics. 2011, 81(9): 1195–1202.

    Article  Google Scholar 

  15. YANG X L, YIN J H. Estimation of seismic passive earth pressures with nonlinear failure criterion [J]. Engineering Structures, 2006, 28(3): 342–348.

    Article  Google Scholar 

  16. YANG X L. Upper bound limit analysis of active earth pressure with different fracture surface and nonlinear yield criterion [J]. Theoretical and Applied Fracture Mechanics, 2007, 47(1): 46–56.

    Article  Google Scholar 

  17. KOUZER K M, KUMAR J. Vertical Uplift Capacity of Equally Spaced Horizontal Strip Anchors in Sand [J]. International Journal of Geomechanics, ASCE, 2009, 9(5): 230–236.

    Article  Google Scholar 

  18. YANG X L, YIN J H. Upper bound solution for ultimate bearing capacity with a modified Hoek-Brown failure criterion [J]. International Journal of Rock Mechanics and Mining Sciences, 2005, 42(4): 550–560.

    Article  MathSciNet  Google Scholar 

  19. YANG X L. Seismic bearing capacity of a strip footing on rock slopes [J]. Canadian Geotechnical Journal, 2009, 46(8): 943–954.

    Article  Google Scholar 

  20. YANG X L, YIN J H. Linear Mohr-Coulomb strength parameters from the non-linear Hoek-Brown rock masses [J]. International Journal of Non-Linear Mechanics, 2006, 41(8): 1000–1005.

    Article  Google Scholar 

  21. SOUBRA A H. Upper-bound solutions for bearing capacity of foundations [J]. Journal of Geotechnical and Geoenvironmental Engineering, 1999, 125(1): 59–68.

    Article  Google Scholar 

  22. DAVIS E H, DUNN M J, MAIR R J, SENEVIRATNE H N. The stability of shallow tunnels and underground openings in cohesive material [J]. Geotechnique, 1980, 30(4): 397–416.

    Article  Google Scholar 

  23. LECA E. and DORMIEUX L. Upper and lower bound solutions for the face stability of shallow circular tunnels in frictional material[J]. Geotechnique, 1990, 40(4): 581–606.

    Article  Google Scholar 

  24. YANG F, YANG J S. Limit analysis method for determination of earth pressure on shallow tunnel [J]. Engineering Mechanics, 2008, 25(7): 179–184. (in Chinese)

    Google Scholar 

  25. BROMS B B, BENNERMARK H. Stability of clay in vertical openings [J]. Journal of the Soil Mechanics and Foundations Division, ASCE, 1967, 96(1): 71–94.

    Google Scholar 

  26. YANG X L, HUANG F. Influences of material dilatancy and pore water pressure on stability factor of shallow tunnels [J]. Transactions of Nonferrous Metals Society of China, 2009, 19(3): 819–823.

    Article  Google Scholar 

  27. SKEMPTON A W. The pore-pressure coefficients A and B [J]. Geotechnique, 1954, 4(4): 143–147.

    Article  Google Scholar 

  28. BISHOP A W. The use of pore pressure coefficients in practice [J]. Geotechnique, 1954, 4(4): 148–152.

    Article  Google Scholar 

  29. VIRATJANDR C, MICHALOWSKI R L. Limit analysis of submerged slopes subjected to water drawdown [J]. Canadian Geotechnical Journal 2006, 43(8): 802–814.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fu Huang  (黄阜).

Additional information

Foundation item: Project(51178468) supported by the National Natural Science Foundation of China; Project(2010bsxt07) supported by the Doctoral Dissertation Innovation Fund of Central South University, China

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, F., Zhang, Db., Sun, Zb. et al. Upper bound solutions of stability factor of shallow tunnels in saturated soil based on strength reduction technique. J. Cent. South Univ. 19, 2008–2015 (2012). https://doi.org/10.1007/s11771-012-1238-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-012-1238-4

Key words

Navigation