Skip to main content
Log in

Novel fluorescence sensor based on covalent immobilization of 3-amino-9-ethylcarbazole via electrostatically assembled gold nanoparticle layer

  • Published:
Journal of Central South University of Technology Aims and scope Submit manuscript

Abstract

A novel technique of immobilizing indicator dyes by electrostatic adsorption and covalent bonding to fabricate optical sensors was developed. 3-Amino-9-ethylcarbazole (AEC) was attached to the outmost surface of quartz glass slide via aminosilanizing the slide, crosslinking chitosan, adsorbing Au nanoparticle, self-assembling HS(CH2)11OH, and coupling AEC. Thus, an AEC-immobilized optical sensor was obtained. The sensor exhibits a wide linear response range from 7.0×10−7 to 1.0×10−4 mol/L and a correlation coefficient of 0.995 9 for the detection of 2-nitrophenol. The detection limit and response time of the sensor are 1.0×10−7 mol/L and less than 10 s, respectively. The fluorescence intensity of the used sensor can be restored to the blank value by simply rinsing with blank buffer. A very effective matrix for immobilizing indicator dye is provided by the proposed technique, which is adaptable to other indicator dyes with amino groups besides AEC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. ZHANG X B, GUO C C, LI Z Z, SHEN G L, YU R Q. An optical fiber chemical sensor for mercury ions based on a porphyrin dimer [J]. Analytical Chemistry, 2002, 74(4): 821–825.

    Article  Google Scholar 

  2. ZENG H H, WANG K M, YU R Q. Development of an optode membrane for the determination of 2-nitrophenol based on fluorescence energy transfer [J]. Analytica Chimica Acta, 1994, 298(2): 271–277.

    Article  Google Scholar 

  3. LIU Y M, PEREIRO-GARCÍA R, VALENCIA-GONZÁLEZ M J, DIAZ-GARCIA M E, SANZ-MEDEL A. Evaluation of some immobilized room-temperature phosphorescent metal chelates as sensing materials for oxygen [J]. Analytical Chemistry, 1994, 66(6): 836–840.

    Article  Google Scholar 

  4. IGARASHI S, KUWAE K, YOTSUYANAGI T. Optical pH sensor of electrostatically immobilized porphyrin on the surface of sulfonated-polystyrene [J]. Analytical Sciences, 1994, 10(5): 821–823.

    Article  Google Scholar 

  5. LU J Z, ZHANG Z J. A reusable optical sensing layer for 2-nitrophenol based on the luminescence quenching of the Eu-thenoyltrifluoroacetone complex [J]. Analytica Chimica Acta, 1996, 318(2): 175–179.

    Article  Google Scholar 

  6. CHRISTINE M, DAVID W, FRED M, STANLEY K. Polymer modification of fiber optic chemical sensors as a method of enhancing fluorescence signal for pH measurement [J]. Analytical Chemistry, 1986, 58(7): 1427–1430.

    Article  Google Scholar 

  7. HISAMOTO H, MANABE Y, YANAI H, TOHMA H, YAMADA T, SUZUKI K. Molecular design, characterization, and application of multiinformation dyes for multidimensional optical chemical sensings (2): Preparation of the optical sensing membranes for the simultaneous measurements of pH and water content in organic media [J]. Analytical Chemistry, 1998, 70(7): 1255–1261.

    Article  Google Scholar 

  8. XAVIER M P, GARCIA-FRESNADILLO D, MORENO-BONDI M C, ORELLANA G. Oxygen sensing in nonaqueous media using porous glass with covalently bound luminescent Ru(II) complexes [J]. Analytical Chemistry, 1998, 70(24): 5184–5189.

    Article  Google Scholar 

  9. MOHR G J, TIRELLI N, SPICHIGER-KELLER U E. Plasticizer-free optode membranes for dissolved amines based on copolymers from alkyl methacrylates and the fluoro reactand ETHT 4014 [J]. Analytical Chemistry, 1999, 71(8): 1534–1539.

    Article  Google Scholar 

  10. AMBROSE T M, MEYERHOFF M E. Optical ion sensing with immobilized thin films of photocrosslinked decyl methacrylate [J]. Analytica Chimica Acta, 1999, 378(1/3): 119–126.

    Article  Google Scholar 

  11. NIU C G, LI Z Z, ZHANG X B, SHEN G L, YU R Q. Covalently immobilized aminonaphthalimide as fluorescent carrier for the preparation of optical sensors [J]. Analytical and Bioanalytical Chemistry, 2002, 372(4): 519–524.

    Article  Google Scholar 

  12. NIU C G, ZENG G M, CHEN L X, SHEN G L, YU R Q. Proton “off-on” behaviour of methylpiperazinyl derivative of naphthalimide: A pH sensor based on fluorescence enhancement [J]. Analyst, 2004, 129(1): 20–24.

    Article  Google Scholar 

  13. NIU C G, GUAN A L, ZENG G M, LIU Y G, HUANG G H, GAO P F, GUI X Q. A ratiometric fluorescence halide sensor based on covalently immobilization of quinine and benzothioxanthene [J]. Analytica Chimica Acta, 2005, 547(2): 221–228.

    Article  Google Scholar 

  14. TAN S Z, NIU C G, JIANG J H, SHEN G L, YU R Q. Optochemical sensor for an ornidazole assay using 1-amino-4-allyloxyanthraquinone as a fluorescent indicator [J]. Analytical Sciences, 2005, 21(8): 967–971.

    Article  Google Scholar 

  15. STELLACCI F, BAUER C A, MEYER-FRIEDRICHSEN T, WENSELEERS W, MARDER S R, PERRY J W. Ultrabright supramolecular beacons based on the self-assembly of two-photon chromophores on metal nanoparticles [J]. Journal of the American Chemical Society, 2003, 125(2): 328–329.

    Article  Google Scholar 

  16. BROWN K R, FOX A P, NATAN M J. Morphology-dependent electrochemistry of cytochrome c at Au colloid-modified SnO2 electrodes [J]. Journal of the American Chemical Society, 1996, 118(5): 1154–1157.

    Article  Google Scholar 

  17. GRABAR K C, FREEMAN R G, HOMMER M B, NATAN M J. Preparation and characterization of Au colloid monolayers [J]. Analytical Chemistry, 1995, 67(4): 735–743.

    Article  Google Scholar 

  18. YAKUSHIJI T, SAKAI K, KIKUCHI A, AOYAGI T, SAKURAI Y, OKANO T. Effects of cross-linked structure on temperature-responsive hydrophobic interaction of poly(N-isopropylacrylamide) hydrogel-modified surfaces with steroids [J]. Analytical Chemistry, 1999, 71(6): 1125–1130.

    Article  Google Scholar 

  19. SHAKHSHER Z M, SEITZ W R. Optical detection of cationic surfactants based on ion pairing with an environment-sensitive fluorophor [J]. Analytical Chemistry, 1990, 62(17): 1758–1762.

    Article  Google Scholar 

  20. ZHANG Z, ZHANG Y, MA W, RUSSELL R, SHAKHSHER Z M, GRANT C L, SEITZ W R, SUNDBERG D C. Poly(vinyl alcohol) as a substrate for indicator immobilization for fiber-optic chemical sensors [J]. Analytical Chemistry, 1989, 61(3): 202–205.

    Article  Google Scholar 

  21. XIA Jin-lan, FU Jin-dian, NIE Zhen-yuan, SHEN Li. Preparation, optical properties and cell staining of water soluble amine-terminated PAMAM G 2.0-Au nanocomposites [J]. Journal of Central South University of Technology, 2005, 12(6): 641–646.

    Article  Google Scholar 

  22. WEI Wan-zhi, ZHAI Xiu-rong, ZENG Jin-xiang, GAO Yan-ping, GONG Shu-guo. New amperometric glucose biosensor by entrapping glucose oxidase into chitosan/nanoporous ZrO2/multiwalled carbon nanotubes nanocomposite film [J]. Journal of Central South University of Technology, 2007, 14(1): 73–77.

    Article  Google Scholar 

  23. DUBERTRET B, CALAME M, LIBCHABER A J. Single-mismatch detection using gold-quenched fluorescent oligonucleotides [J]. Nature Biotechnology, 2001, 19(4): 365–370.

    Article  Google Scholar 

  24. MAXWELL D J, TAYLOR J R, NIE S. Self-assembled nanoparticle probes for recognition and detection of biomolecules [J]. Journal of the American Chemical Society, 2002, 124(32): 9606–9612.

    Article  Google Scholar 

  25. WATANABE K, NAKAGAWA E, YAMADA H, HISAMOTO H, SUZUKI K. Lithium ion selective optical fiber sensor based on a novel neutral ionophore and a lipophilic anionic dye [J]. Analytical Chemistry, 1993, 65(19): 2704–2710.

    Article  Google Scholar 

  26. KURIHARA K, OHTSU M, YOSHIDA T, ABE T, HISAMOTO H, SUZUKI K. Micrometer-sized sodium ion-selective optodes based on a “Tailed” neutral ionophore [J]. Analytical Chemistry, 1999, 71(16): 3558–3566.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shu-zhen Tan  (谭淑珍).

Additional information

Foundation item: Project(20775010) supported by the National Natural Science Foundation of China; Project(208095) supported by the Key Project of Ministry of Education, China; Project(07A006) supported by the Scientific Research Fund of Hunan Provincial Education Department, China; Project(07JJ3020) supported by Hunan Provincial Natural Science Foundation of China

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tan, Sz., Long, S., Xia, Jy. et al. Novel fluorescence sensor based on covalent immobilization of 3-amino-9-ethylcarbazole via electrostatically assembled gold nanoparticle layer. J. Cent. South Univ. Technol. 16, 212–217 (2009). https://doi.org/10.1007/s11771-009-0036-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-009-0036-0

Key words

Navigation