Skip to main content
Log in

Self-assembly constructed by perylene bisimide derivatives bearing complementary hydrogen-bonding moieties

  • Published:
Journal of Central South University of Technology Aims and scope Submit manuscript

Abstract

An intermediate compound 2, 4-bis(laurylamino)-6-(1-(2-aminoethyl)-piperazine)-1, 3, 5-triazine was prepared by stepwise nucleophilic substitution on triazine ring by lauryl amine and subsequently 1-(2-aminoethyl)-piperazine. Then imidization of perylene-3, 4, 9, 10-tetracarboxylic acid dianhydride with 2,4-bis(laurylamino)-6-(1-(2-aminoethyl)-piperazine)-1, 3, 5-triazine was carried out to afford a novel perylene derivative bearing two melamine blocks (S2) and 1, 6, 7, 12-tetra(4-tert-butyl phenoxy)-perylene-3, 4, 9, 10-tetracarboxylic acid bisimide (S1). The hydrogen-bonding interactions between S1 and S2 were investigated by 1H NMR spectrum, UV/Vis spectrum and fluorescence spectrum. The influences on the morphologies of S1·S2 aggregates were investigated. The results show that well-defined nanofibers with a diameter of about 100 nm can be obtained by self-assembly between S1 and S2 only in CH2Cl2 solution. Based on these results, guidelines for the molecular design and self-assembly of supramolecular polymer materials are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. BRUNSVELD L, FOLMER B J B, MEIJER E W, SIJBESMA R P. Supramolecular polymer [J]. Chem Rev, 2001, 101(12): 4071–4097.

    Article  Google Scholar 

  2. HOEBEN F J M, JONKHEIJM P, MEIJER E W, SCHENNING A P H J. About supramolecular assemblies of π-conjugated systems [J]. Chem Rev, 2005, 105(4): 1491–1546.

    Article  Google Scholar 

  3. OUALI L, KRASNIKOV V V, STALMACH U. Oligo(phenylenevinylene)/fullerene photovoltaic cells: Influence of morphology [J]. Adv Mater, 1999, 11(14): 1515–1518.

    Article  Google Scholar 

  4. WÜRTHNER F, THALACKER C, SAUTTER A, SCHÄRTL W, IBACH W, HOLLRICHER O. Hierarchical self-organization of perylene bisimide-melamine assemblies to fluorescent mesoscopic superstructures [J]. Chem Eur J, 2000, 6(21): 3871–3886.

    Article  Google Scholar 

  5. ZHANG J, HOEBEN F J M, POUDEROIJEN M J, SCHENNING A P H J, MEIJER E W, de SCHRYVER F C, de FEYTER S. Hydrogen-bonded oligo(p-phenylenevinylene) functionalized with perylene bisimide: Self-assembly and energy transfer [J]. Chem Eur J, 2006, 12(35): 9046–9055.

    Article  Google Scholar 

  6. WANG Y, CHEN Y, LI R, WANG S, SU W, MA P. WASIELEWSKI M R. Amphiphilic perylenetretracarboxyl diimide dimer and its application in field effect transistor [J]. Langmuir, 2007, 23(10): 5836–5842.

    Article  Google Scholar 

  7. MORIUCHI T, TAMURA T, HIRAO T. Self-assembly of dipeptidyl ureas: A new class of hydrogen-bonded molecular duplexes [J]. J Am Chem Soc, 2002, 124(32): 9356–9357.

    Article  Google Scholar 

  8. YAGAI S, KARATSU T, KITAMURA A. Binary supramolecular gels based on bismelamine cyanurate/barbiturate noncovalent polymers [J]. Chem Mater, 2004, 16(19): 3582–3585.

    Article  Google Scholar 

  9. DEFEYTAR S, WÜRTHNER F, MEIJER E W, SHENG YAO, ZHIGIAN C, WURTHNER F. Two-dimensional self-assembly into multicomponent hydrogen-bonded nanostructures [J]. Nano Lett, 2005, 5(1): 77–81.

    Article  Google Scholar 

  10. YAGAI S, MONMA Y, KAWAUCHI N, KARASTY T, KITAWURAA. Supramolecular nanoribbons and nanoropes generated from hydrogen-bonded supramolecular polymers containing perylene bisimide chromophores [J]. Org Lett, 2007, 9(6): 1137–1140.

    Article  Google Scholar 

  11. WÜRTHNER F. Perylene bisimide dyes as versatile building blocks for functional supramolecular architectures [J]. Chem Commun, 2004(14): 1564–1579.

  12. SINKS L E, RYBTCHINSKI B, LIMURA M, JUVES B A, GOSHE A T. Self-assembly of photofunctional cylindrical nanostructures based on perylene-3, 4, 9, 10-bis(dicarboximide) [J]. Chem Mater, 2005, 17(25): 6295–6303.

    Article  Google Scholar 

  13. WÜRTHNER F, THALACKER C, SAUTTER A. Hierarchical organization of functional perylene chromophores to mesoscopic superstructures by hydrogen bonding and π-π interactions [J]. Adv Mater, 1999, 11(9): 754–758.

    Article  Google Scholar 

  14. LIU Y, ZHUANG J, LIU H, LI Y, LU F, GAN H, JIU T. Self-assembly and characterization of hydrogen-bond-induced nanostructure [J]. Chem Phys Chem, 2004, 5(8): 1210–1215.

    Article  Google Scholar 

  15. LIU Y, XIAO S, ZHU D, ZHUANG J, LU F, LI Y, XIAO S. Self-assembly and characterization of a novel hydrogen-bonded nanostructure [J]. J Phys Chem B, 2004, 108(20): 6256–6260.

    Article  Google Scholar 

  16. THALACKER C, WÜRTHNER F. Chiral perylene bisimide-melamine assemblies: Hydrogen bond-directed growth of helically stacked dyes with chiroptical properties [J]. Adv Funct Mater, 2002, 12(3): 209–218.

    Article  Google Scholar 

  17. YANG Xin-guo, SUN Jing-zhi, LI Han-ying, CAO Jian, WANG Mang. Fluorescence switch based on a porphyrin-perylenediimde dyad [J]. Chinese Chemical Letters, 2005, 16(2): 257–260. (in Chinese)

    Google Scholar 

  18. XIE Bo-yu, CAO Ya-feng, SUN Jing-zhi, YANG Xin-guo, WANG Mang. Change in aggregation state of a porphyrin-perylene-diimide dyad induced by trifluoroacetic acid [J]. Chinese Science Bulletin, 2007, 52(19): 2266–2270. (in Chinese)

    Article  Google Scholar 

  19. STEFFENSEN M B, SIMANEK E E. Chemoselective building blocks for dendrimers from relative reactivity data [J]. Org Lett, 2003, 5(13): 2359–2361.

    Article  Google Scholar 

  20. PRINS L J, REINHOUDT D N, TIMMEERMAN P. Non-covalent synthesis using hydrogen bonding [J]. Angew Chem Int Ed, 2001, 123(40): 2383–2426.

    Google Scholar 

  21. MESSMORE B W, HULVAT J F, SONE E D, STUPP S I. Synthesis, Self-assembly, and characterization of supramolecular polymers from electroactive dendron rodcoil molecules [J]. Am Chem Soc, 2004, 126(44): 14452–14458.

    Article  Google Scholar 

  22. PRAVEEN V K, GEORGE S J, VARGHESE R, VIJAYAKUMAR C, AJAYAGHOSH A. Self-Assembled π-nanotapes as donor scaffolds for selective and thermally gated fluorescence resonance energy transfer (FRET) [J]. Am Chem Soc, 2006, 128(23): 7542–7550.

    Article  Google Scholar 

  23. GUERZO A D, OLIVE A G L, REICHWAGEN J, HOPF H, DESVERGNE J P. Energy transfer in self-assembled [n]-acene fibers involving ≥100 donors per acceptor [J]. Am Chem Soc, 2005, 127(51): 17984–17985.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing Yang  (杨 青).

Additional information

Foundation item: Project(50573019) support by the National Natural Science Foundation of China

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, Xg., Yuan, H., Zhao, Ql. et al. Self-assembly constructed by perylene bisimide derivatives bearing complementary hydrogen-bonding moieties. J. Cent. South Univ. Technol. 16, 206–211 (2009). https://doi.org/10.1007/s11771-009-0035-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-009-0035-1

Key words

Navigation