Skip to main content
Log in

Assessing the Dynamics of Grassland Net Primary Productivity in Response to Climate Change at the Global Scale

  • Published:
Chinese Geographical Science Aims and scope Submit manuscript

Abstract

Understanding the net primary productivity (NPP) of grassland is crucial to evaluate the terrestrial carbon cycle. In this study, we investigated the spatial distribution and the area of global grassland across the globe. Then, we used the Carnegie-Ames-Stanford Approach (CASA) model to estimate global grassland NPP and explore the spatio-temporal variations of grassland NPP in response to climate change from 1982 to 2008. Results showed that the largest area of grassland distribution during the study period was in Asia (1737.23 × 104 km2), while the grassland area in Europe was relatively small (202.83 × 104 km2). Temporally, the total NPP increased with fluctuations from 1982 to 2008, with an annual increase rate of 0.03 Pg C/yr. The total NPP experienced a significant increasing trend from 1982 to 1995, while a decreasing trend was observed from 1996 to 2008. Spatially, the grassland NPP in South America and Africa were higher than the other regions, largely as a result of these regions are under warm and wet climatic conditions. The highest mean NPP was recorded for savannas (560.10 g C/(m2·yr)), whereas the lowest was observed in open shrublands with an average NPP of 162.53 g C/(m2·yr). The relationship between grassland NPP and annual mean temperature and annual precipitation (AMT, AP, respectively) varies with changes in AP, which indicates that, grassland NPP is more sensitive to precipitation than temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alexandrov G A, Oikawa T, Esser G, 1999. Estimating terrestrial NPP: what the data say and how they may be interpreted? Ecological Modelling, 117(2-3): 361–369. doi: 10.1016/ s0304-3800(99)00019-8

    Article  Google Scholar 

  • Barford C C, Wofsy S C, Goulden M L et al., 2001. Factors controlling long- and short-term sequestration of atmospheric C02 in a mid-latitude forest. Science, 294(5547): 1688–1691. doi: 10.1126/science.1062962

    Article  Google Scholar 

  • Beer C, Reichstein M, Tomelleri E et al., 2010. Terrestrial gross carbon dioxide uptake: global distribution and covariation with climate. Science, 329(5993): 834–838. doi: 10.1126/science. 1184984

    Article  Google Scholar 

  • Bolin B, 1977. Changes of land biota and their importance for the carbon cycle. Science, 196(4290): 613–615. doi: 10.1126/ science. 196.4290.613

    Article  Google Scholar 

  • Chen L Y, Li H, Zhang P J et al., 2015. Climate and native grassland vegetation as drivers of the community structures of shrub-encroached grasslands in Inner Mongolia, China. Landscape Ecology, 30(9): 1627–1641. doi: 10.1007/sl0980-014-0044-9

    Article  Google Scholar 

  • Chen T, van der Werf G R, de Jeu R A M et al., 2013. A global analysis of the impact of drought on net primary productivity. Hydrology and Earth System Sciences, 17(10): 3885–3894. doi: 10.5194/hessd-10-2429-2013

    Article  Google Scholar 

  • Chen Y Z, Mu S J, Sun Z G et al, 2016. Grassland carbon sequestration ability in China: a new perspective from terrestrial aridity zones. Rangeland Ecology & Management, 69(1): 84–94. doi: 10.1016/j.rama.2015.09.003

    Article  Google Scholar 

  • Chen Y Z, Li J L, Ju W M et al., 2017. Quantitative assessments of water-use efficiency in Temperate Eurasian Steppe along an aridity gradient. PLoS One, 12(7): e0179875. doi: 10.1371/journal.pone.0179875

    Google Scholar 

  • Chen Zhenghua, Ma Qingyuan, Wang Jian et al., 2008. Estimation of Heihe Basin net primary productivity using the CASA model. Journal of Natural Resources, 23(4): 263–273. (in Chinese)

    Google Scholar 

  • DeLucia E H, Drake J E, Thomas R B et al., 2007. Forest carbon use efficiency: is respiration a constant fraction of gross primary production? Global Change Biology, 13(6): 1157–1167. doi: 10.1111/j.1365-2486.2007.01365.x

    Article  Google Scholar 

  • Dong J R, Kaufmann R K, Myneni R B et al., 2003. Remote sensing estimates of boreal and temperate forest woody bio-mass: carbon pools, sources, and sinks. Remote Sensing of Environment, 84(3): 393–410. doi: 10.1016/s0034-4257(02) 00130-x

    Article  Google Scholar 

  • Field C B, Randerson J T, Malmstrom C M, 1995. Global net primary production: combining ecology and remote sensing. Remote Sensing of Environment, 51(1): 74–88. doi: 10.1016/ 0034-4257(94)00066-v

    Article  Google Scholar 

  • Gang C, Zhou W, Wang Z et al., 2015. Comparative assessment of grassland NPP dynamics in response to climate change in China, North America, Europe and Australia from 1981 to 2010. Journal of Agronomy and Crop Science, 201(1): 57–68. doi: 10.1111/jac.l2088

    Article  Google Scholar 

  • Gang C, Wang Z, Zhou W et al., 2016b. Assessing the spatiotem-poral dynamic of global grassland water use efficiency in response to climate change from 2000 to 2013. Journal of Agronomy and Crop Science, 202(5): 343–354. doi: 10.1111/ jac.12137

    Article  Google Scholar 

  • Gang C C, Wang Z Q, Chen Y Z et al., 2016a. Drought-induced dynamics of carbon and water use efficiency of global grasslands from 2000 to 2011. Ecological Indicators, 67: 788–797. doi: 10.1016/j.ecolind.2016.03.049

    Article  Google Scholar 

  • Gang C C, Zhao W, Zhao T et al., 2018. The impacts of land conversion and management measures on the grassland net primary productivity over the Loess Plateau, Northern China. Science of the Total Environment, 645: 827–836. doi: 10.1016/j.scitotenv.2018.07.161

    Article  Google Scholar 

  • Gao Q Z, Schwartz M W, Zhu W Q et al, 2016. Changes in global grassland productivity during 1982 to 2011 attributable to climatic factors. Remote Sensing, 8(5): 384. doi: 10.3390/ rs8050384

    Article  Google Scholar 

  • Grace J, Jose J S, Meir P et al., 2006. Productivity and carbon fluxes of tropical savannas. Journal of Biogeography, 33(3): 387–400. doi: 10.1111/j.1365-2699.2005.01448.x

    Article  Google Scholar 

  • Hicke J A, Asner G P, Randerson J T et al., 2002. Trends in North American net primary productivity derived from satellite observations, 1982-1998. Global Biogeochemical Cycles, 16(2): 2-1-2-14. doi: 10.1029/2001gb001550

    Google Scholar 

  • Hilker T, Lyapustin A I, Tucker C J et al., 2014. Vegetation dynamics and rainfall sensitivity of the Amazon. Proceedings of the National Academy of Sciences of the United States of America, 111(45): 16041–16046. doi: 10.1073/pnas. 1404870111

    Article  Google Scholar 

  • Joos F, Prentice I C, Sitch S et al., 2001. Global warming feedbacks on terrestrial carbon uptake under the Intergovernmental Panel on Climate Change (IPCC) Emission Scenarios. Global Biogeochemical Cycles, 15(4): 891–907. doi: 10.1029/ 2000gb001375

    Article  Google Scholar 

  • Keenan T F, Baker I, Barr A et al., 2012. Terrestrial biosphere model performance for inter-annual variability of land-atmosphere CO2 exchange. Global Change Biology, 18(6): 1971–1987. doi: 10.1111/j.l365-2486.2012.02678.x

    Article  Google Scholar 

  • Khalifa M, Elagib N A, Ribbe L et al, 2018. Spatio-temporal variations in climate, primary productivity and efficiency of water and carbon use of the land cover types in Sudan and Ethiopia. Science of the Total Environment, 624: 790–806. doi: 10.1016/j.scitotenv.2017.12.090

    Article  Google Scholar 

  • Knutson T R, Delworth T L, Dixon K W et al, 1999. Model assessment of regional surface temperature trends (1949-1997). Journal of Geophysical Research: Atmospheres, 104(D24): 30981–30996. doi: 10.1029/1999jd900965

    Article  Google Scholar 

  • Liang W, Yang Y T, Fan D M et al., 2015. Analysis of spatial and temporal patterns of net primary production and their climate controls in China from 1982 to 2010. Agricultural and Forest Meteorology, 204: 22–36. doi: 10.1016/j.agrformet.2015.01. 015

    Article  Google Scholar 

  • Lieth H, 1975. Modeling the primary productivity of the world. In: Lieth H, Whittaker R H (eds). Primary Productivity of the Biosphere. Berlin, Heidelberg: Springer, 237–263. doi: 10.1007/978-3-642-80913-2J2

    Chapter  Google Scholar 

  • Lin X H, Han P F, Zhang W et al., 2017. Sensitivity of alpine grassland carbon balance to interannual variability in climate and atmospheric CO2 on the Tibetan Plateau during the last century. Global and Planetary Change, 154: 23–32. doi: 10.1016/j.gloplacha.2017.05.008

    Article  Google Scholar 

  • Ling H, He B, Chen A F et al., 2016. Drought dominates the interannual variability in global terrestrial net primary production by controlling semi-arid ecosystems. Scientific Reports, 6: 24639. doi: 10.1038/srep24639

    Article  Google Scholar 

  • Liu J, Chen J M, Cihlar J et al., 2002. Net primary productivity mapped for Canada at 1-km resolution. Global Ecology and Biogeography, 11(2): 115–129. doi: 10.1046/j.l466-822x. 2002.00278.x

    Article  Google Scholar 

  • Liu Y Y, Wang Q, Zhang Z Y et al., 2019a. Grassland dynamics in responses to climate variation and human activities in China from 2000 to 2013. Science of the Total Environment, 690: 27–39. doi: 10.1016/j.scitotenv.2019.06.503

    Article  Google Scholar 

  • Liu Y Y, Yang Y, Wang Q et al., 2019b. Evaluating the responses of net primary productivity and carbon use efficiency of global grassland to climate variability along an aridity gradient. Science of the Total Environment, 652: 671–682. doi: 10.1016/ j.scitotenv.2018.10.295

    Article  Google Scholar 

  • Liu Y Y, Zhang Z Y, Tong L J et al., 2019c. Assessing the effects of climate variation and human activities on grassland degradation and restoration across the globe. Ecological Indicators, 106: 105504. doi: 10.1016/j.ecolind.2019.105504

    Article  Google Scholar 

  • Mao D H, Wang Z M, Li L et al., 2014. Spatiotemporal dynamics of grassland aboveground net primary productivity and its association with climatic pattern and changes in Northern China. Ecological Indicators, 41: 40–48. doi: 10.1016/j.ecolind.2014. 01.020

    Article  Google Scholar 

  • Melillo J M, McGuire A D, Kicklighter D W et al, 1993. Global climate change and terrestrial net primary production. Nature, 363(6426): 234–240. doi: 10.1038/363234a0

    Article  Google Scholar 

  • Nemani R R, Keeling C D, Hashimoto H et al., 2003. Climate-driven increases in global terrestrial net primary production from 1982 to 1999. Science, 300(5625): 1560–1563. doi: 10.1126/science. 1082750

    Article  Google Scholar 

  • Potter C, Klooster S, Genovese V, 2012. Net primary production of terrestrial ecosystems from 2000 to 2009. Climatic Change, 115(2): 365–378. doi: 10.1007/sl0584-012-0460-2

    Article  Google Scholar 

  • Potter C S, Randerson J T, Field C B et al., 1993. Terrestrial ecosystem production: a process model based on global satellite and surface data. Global Biogeochem. Cycles, 7: 811–841.

    Article  Google Scholar 

  • Raich J W, Rastetter E B, Melillo J M et al., 1991. Potential net primary productivity in South America: application of a global model. Ecological Applications, 1(4): 399–429. doi: 10.2307/ 1941899

    Article  Google Scholar 

  • Schimel D S, House J I, Hibbard K A et al., 2001. Recent patterns and mechanisms of carbon exchange by terrestrial ecosystems. Nature, 414(6860): 169–172. doi: 10.1038/35102500

    Article  Google Scholar 

  • Scurlock J M O, Johnson K, Olson R J, 2002. Estimating net primary productivity from grassland biomass dynamics measurements. Global Change Biology, 8(8): 736–753. doi: 10.1046/j.1365-2486.2002.00512.x

    Article  Google Scholar 

  • Toms J D, Lesperance M L, 2003. Piecewise regression: a tool for identifying ecological thresholds. Ecology, 84(8): 2034–2041. doi: 10.1890/02-0472

    Article  Google Scholar 

  • Uchijima Z, Seino H, 1985. Agroclimatic Evaluation of net primary productivity of natural vegetations: (1) chikugo model for evaluating net primary productivity. Journal of Agricultural Meteorology, 40(4): 343–352. doi: 10.2480/agrmet.40.343

    Article  Google Scholar 

  • Xia J Z, Liu S G, Liang S L et al., 2014. Spatio-temporal patterns and climate variables controlling of biomass carbon stock of global grassland ecosystems from 1982 to 2006. Remote Sensing, 6(3): 1783–1802. doi: 10.3390/rs6031783

    Article  Google Scholar 

  • Xing Xiaoxu, Xu Xingliang, Zhang Xianzhou et al., 2010. Simulating net primary production of grasslands in northeastern Asia using MODIS data from 2000 to 2005. Journal of Geographical Sciences, 20(2): 193–204. doi: 10.1007/s11442-010-0193-y

    Article  Google Scholar 

  • Xu H J, Wang X P, Zhang X X, 2016. Alpine grasslands response to climatic factors and anthropogenic activities on the Tibetan Plateau from 2000 to 2012. Ecological Engineering, 92: 251–259. doi: 10.1016/j.ecoleng.2016.04.005

    Article  Google Scholar 

  • Yang Y, Wang Z Q, Li J L et al., 2017. Assessing the spatiotem-poral dynamic of global grassland carbon use efficiency in response to climate change from 2000 to 2013. Acta Oecologica, 81: 22–31. doi: 10.1016/j.actao.2017.04.004

    Article  Google Scholar 

  • Yang Y H, Fang J Y, Ma W H et al, 2008. Relationship between variability in aboveground net primary production and precipitation in global grasslands. Geophysical Research Letters, 35(23): L23710. doi: 10.1029/2008gl035408

    Google Scholar 

  • Zeng B, Yang T B, 2008. Impacts of climate warming on vegetation in Qaidam Area from 1990 to 2003. Environmental Monitoring and Assessment, 144(1-3): 403–117. doi: 10.1007/s10661-007-0003-x

    Google Scholar 

  • Zhang Y, Zhang C B, Wang Z Q et al., 2016. Vegetation dynamics and its driving forces from climate change and human activities in the Three-River Source Region, China from 1982 to 2012. Science of the Total Environment, 563–564: 210–220. doi: 10.1016/j.scitotenv.2016.03.223

    Google Scholar 

  • Zhao M S, Running S W, 2010. Drought-induced reduction in global terrestrial net primary production from 2000 through 2009. Science, 329(5994): 940–943. doi: 10.1126/science. 1192666

    Article  Google Scholar 

  • Zheng Zhong, Qi Yuan, Pan Xiaoduo et al., 2013. Estimating the grassland NPP in Qinghai Lake Basin based on WRF model data and CASA model. Journal of Glaciology and Geocryology, 35(2): 465–474. (in Chinese)

    Google Scholar 

  • Zhou W, Yang H, Huang L et al., 2017. Grassland degradation remote sensing monitoring and driving factors quantitative assessment in China from 1982 to 2010. Ecological Indicators, 83: 303–313. doi: 10.1016/j.ecolind.2017.08.019

    Article  Google Scholar 

  • Zhou W, Yang H, Zhou L et al., 2018. Dynamics of grassland carbon sequestration and its coupling relation with hydrother-mal factor of Inner Mongolia. Ecological Indicators, 95: 1–11. doi: 10.1016/j.ecolind.2018.07.008

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jianlong Li or Aiping Shi.

Additional information

Foundation item: Under the auspices of Asia Pacific Network for Global Change Research (APN), Global Change Fund Project (No. ARCP2015-03CMY-Li), National Natural Science Foundation of China (No. 41271361, 41501575), National Key Research and Development Project (No. 2018YFD0800201), Key Project of Chinese National Programs for Fundamental Research and Development (No. 2010CB950702)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Yang, Y., Wang, Q. et al. Assessing the Dynamics of Grassland Net Primary Productivity in Response to Climate Change at the Global Scale. Chin. Geogr. Sci. 29, 725–740 (2019). https://doi.org/10.1007/s11769-019-1063-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11769-019-1063-x

Keywords

Navigation