Skip to main content
Log in

Characterization of microbial community structure in rhizosphere soils of Cowskin Azalea (Rhododendron aureum Georgi) on northern slope of Changbai Mountains, China

  • Published:
Chinese Geographical Science Aims and scope Submit manuscript

Abstract

The vegetation and soil are mutual environmental factors, soil characteristics, such as chemical properties and microorganism that affect the vegetation occurrence, development and succession speed. In this study, we evaluated the structure of microbial communities of rhizosphere of Cowskin Azalea (Rhododendron aureum Georgi) populations and compared with non-rhizosphere soils at four sample sites of the Changbai Mountains, China, and analyzed the correlation between chemical properties of soil and microbial communities. The results showed that microbial structure and soil chemical properties are significant superior to non-rhizosphere at all four sample sites. The rhizosphere microorganisms are mainly composed of bacteria, actinomycetes, followed by fungi least. The principal component analysis (PCA) biplot displayed that there are differences between rhizosphere and non-rhizosphere soils for microflora; Through correlation analysis, we found that the bacteria is clearly influenced by pH on the Changbai Mountains, besides pH, other soil features such as NO 3 -N. These data highlight that R. aureum as the dominant vegetation living in the alpine tundra is a key factor in the formation of soil microorganism and improving soil fertility, and is of great significance for the maintenance of alpine tundra ecosystem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bai Xiaoming, 1988. The Exploitation of Natural Resources and Protection of Ecological Environment in Changbaishan Mountain Region. Changchun: Jilin Science and Technology Press, 219–223. (in Chinese)

    Google Scholar 

  • Berg G, Opelt K, Zachow C et al., 2006. The rhizosphere effect on bacteria antagonistic towards the pathogenic fungus Verticillium differs depending on plant species and site. Fems Microbiology Ecology, 56(2): 250–261. doi: 10.1111/j.1574-6941.2005.00025.x

    Article  Google Scholar 

  • Chen W, Luo J K, Shen Q R, 2005. Effect of NH4+-N/NO3–-N ratios on growth and some physiological parameters of Chinese cabbage caltivars. Pedosphere, 15(3): 310–318.

    Google Scholar 

  • Chu H, Fierer N, Lauber C L et al., 2010. Soil bacterial diversity in the Arctic is not fundamentally different from that found in other biomes. Environmental Microbiology, 12(11): 2998–3006. doi: 10.1111/j.1462-2920.2010.02277.x

    Article  Google Scholar 

  • Chu H, Neufeld J D, Walker V K et al., 2011. The influence of vegetation type on the dominant soil bacteria, archaea, and fungi in a low Arctic tundra landscape. Soil Science Society of America Journal, 75(5): 1756–1765. doi: 10.2136/sssaj2011.0057

    Article  Google Scholar 

  • Djukic I, Zehetner F, Mentler A et al., 2010. Microbial community composition and activity in different alpine vegetation zones. Soil Biology and Biochemistry, 42(2): 155–161. doi:10.1016/j.soilbio.2009.10.006

    Article  Google Scholar 

  • Du Y D, Xing M, Chen X et al., 2011. Genetic diversity caused by environmental stress in natural populations of Niupidujuan (Rhododendron chrysanthum), a species endemic to Changbai Mountain, Northeast China, as revealed by RAPD technique. Chemical Research in Chinese Universites, 27(4): 641–645. doi: 1005-9040(2011)-04-641-05

    Article  Google Scholar 

  • Duineveld B M, Kowalchuk G A, Keijzer A et al., 2001. Analysis of bacterial communities in the rhizosphere of chrysanthemum via denaturing gradient gel electrophoresis of PCR-amplified 16SrRNA as well as DNA fragments coding for 16S rRNA. Applied and Environmental Microbiology, 67(1): 172–178. doi: 10.1128/AEM.67.1.172–178.2001

    Article  Google Scholar 

  • Foster R C, 1988. Microenvironments of soil microorganisms. Biology and Fertility of Soils, 6(3): 189–203. doi: 10.1007/BF00260816

    Article  Google Scholar 

  • Gong Yu, Liu Xianhu, Zhang Chunying et al., 2010. The anatomy structure of leaf-blades from Rhododendron chrysanthum Pall in different regions. Journal of Agricultural Science Yanbian University, 32(1): 22–25. (in Chinese)

    Google Scholar 

  • Govaerts B, Mezzalama M, Sayre K D et al., 2008. Long-term consequences of tillage, residue management, and crop rotation on selected soil micro-flora groups in the subtropical highlands. Applied Soil Ecology, 38(3): 197–210.doi: 10.1016/j.apsoil.2005.07.010

    Article  Google Scholar 

  • Hassan M M, Majumder A H, 1990. Distribution of organic matter in some representative forest soils of Bangladesh. Indian Journal of Forestry, 13(4): 281–287. doi: 19930672829

    Google Scholar 

  • Hu Linzhen, Fang Mingyuan, 1994. Flora of China. Beijing: Science Press, 144. (in Chinese)

    Google Scholar 

  • Jin J, Wang G H, Liu X B, 2009. Temporal and spatial dynamics of bacterial community in the rhizosphere of soybean genotypes grown in a black soil. Pedosphere, 19(6): 808–816. doi: 10.1016/S1002-0160(09)60176-4

    Article  Google Scholar 

  • Johnson D W, Cheng W, Ball J T, 2000. Effects of CO2 and N fertilization on decomposition and immobilization in ponderosa pine litter. Plant and Soil, 224(1): 115–122. doi: 10.1023/A:1004606901550

    Article  Google Scholar 

  • Kudo G, 1993. Relationships between flowering time and fruit set of the entomophilous alpine shrub, rhododendron aureum (Ericaceae), inhabiting snow patches. American Journal of Botany, 80(11): 1300–1304. doi: 10.2307/2445714

    Article  Google Scholar 

  • Lambers H, Mougel C, Jaillard B et al., 2009. Plant-microbesoil interactions in the rhizosphere: an evolutionary perspective. Plant & Soil, 321(1–2): 83–115. doi: 10.1007/s11104-009-0042-x

    Article  Google Scholar 

  • Lipson D A, Monson R K, 1998. Plant-microbe competition for soil amino acids in the alpine tundra: effects of freezethaw and dry-rewet events. Oecologia, 113(3): 406–414. doi: 10.1007/s004420050393

    Article  Google Scholar 

  • Liu Y F, Xing M, Zhao W et al., 2012. Genetic diversity analysis of Rhododendron aureum Georgi (Ericaceae) located on Changbai Mountain using ISSR and RAPD markers. Plant Systematics and Evolution, 298(5): 921–930. doi: 10.1007/s00606-012-0601-0

    Article  Google Scholar 

  • Marilley L, Aragno M, 1999. Phylogenetic diversity of bacterial communities differing in degree of proximity of Lolium perenne and Trifolium repens roots. Applied Soil Ecology, 13(2): 127–136. doi: 10.1016/S0929-1393(99)00028-1

    Article  Google Scholar 

  • Marschner P, Neumann G, Kania A et al., 2002. Spatial and temporal dynamics of the microbial community structure in the rhizosphere of cluster roots of white lupin (Lupinus albus L.). Plant & Soil, 246(2): 167–174. doi: 10.1038/ismej.2012.26

    Article  Google Scholar 

  • Miethling R, Wieland G, Backhaus H et al., 2000. Variation of microbial rhizosphere communities in response to crop species, soil origin, and inoculation with Sinorhizobium meliloti L33. Microbial Ecology, 40(1): 43–56. doi: 10.1007/s 002480000021

    Article  Google Scholar 

  • Nielsen U N, Osler G H R, Campbell C D et al., 2010. The influence of vegetation type, soil properties and precipitation on the composition of soil mite and microbial communities at the landscape scale. Journal of Biogeography, 37(7): 1317–1328. doi: 10.1111/j.1365-2699.2010.02281.x

    Article  Google Scholar 

  • Qi Linghuang, Zhang Xudong, Sun Qixiang et al., 2007. Soil vegetation system and its influences on soil health. World Forestry Research, 20(3): 1–8. (in Chinese)

    Google Scholar 

  • Rajaniemi T K, Allison V J, 2009. Abiotic conditions and plant cover differentially affect microbial biomass and community composition on dune gradients. Soil Biology & Biochemistry, 41(1): 102–109. doi: 10.1016/j.soilbio.2008.10.001

    Article  Google Scholar 

  • Schmalenberger A, Tebbe C C, 2003. Bacterial diversity in maize rhizospheres: conclusions on the use of genetic profiles based on PCR-amplified partial small subunit rRNA genes in ecological studies. Molecular Ecology, 12(1): 251–261. doi: 10.1046/j.1365-294X.2003.01716.x

    Article  Google Scholar 

  • Shen C, Xiong J, Zhang H et al., 2013. Soil pH drives the spatial distribution of bacterial communities along elevation on Changbai Mountain. Soil Biology and Biochemistry, 573: 204–211. doi: 10.1016/j.soilbio.2012.07.013

    Article  Google Scholar 

  • Shirokikh I G, Zenova G M, Zvyagintsev D G, 2002. Actinomycetes in the rhizosphere of barley grown on acid soddy podzolic soil. Microbiology, 71(4): 455–459. doi: 10.1023/A: 1019853812690

    Article  Google Scholar 

  • Stephan A, Meyer A H, Schmid B, 2000. Plant diversity affects culturable soil bacteria in experimental grassland communities. Journal of Ecology, 88(6): 988–998. doi: 10.1046/j.1365-2745.2000.00510.x

    Article  Google Scholar 

  • Sun G, Luo P, Wu N et al., 2009. Stellera chamaejasme L. increases soil N availability, turnover rates and microbial biomass in an alpine meadow ecosystem on the eastern Tibetan Plateau of China. Soil Biology & Biochemistry, 41(1): 86–91. doi: 10.1016/j.soilbio.2008.09.022

    Google Scholar 

  • Thangapandian V, Ponmurugan P, Pomnurugan K, 2007. Actinomycetes diversity in the rhizosphere soils of different medicinal plants in Kolly Hills-Tamilnadu, India, for secondary metabolite production. Asian Journal of Plant Sciences, 6(1): 66–70.

    Article  Google Scholar 

  • Wagai R, Kitayama K, Satomura T et al., 2011. Interactive influences of climate and parent material on soil microbial community structure in Bornean tropical forest ecosystems. Ecological Research, 26(3): 627–636. doi: 10.1007/s11284-011-0822-7

    Article  Google Scholar 

  • Wallenstein M D, McMahon S, Schimel J, 2007. Bacterial and fungal community structure in Arctic tundra tussock and shrub soils. FEMS Microbiology Ecology, 59(2): 428–435. doi: 10.1111/j.1574-6941.2006.00260.x

    Article  Google Scholar 

  • Xu Guanghuing, Zheng Hongyuan, 1986. Handbook of Analysis of Soil Microorganism. Beijing: Agriculture Press, 107–109. (in Chinese)

    Google Scholar 

  • Xu Wenduo, He Xingyuan, Chen Wei et al., 2004. Characteristics and succession rules of vegetation types in Changbai Mountain. Chinese Journal of Ecology, 23(5): 162–174. (in Chinese)

    Google Scholar 

  • Yang X, Wu G, 1998. The strategy for conservation and sustainable utilization of biodiversity in Changbaishan Biosphere Reserve. Journal of Forestry Research, 9(3): 217–222. doi: 10.1007/BF02910074

    Article  Google Scholar 

  • Zhang M, Zhang X K, Liang W J et al., 2011. Distribution of soil organic carbon fractions along the altitudinal gradient in Changbai Mountain, China. Pedosphere, 21(5): 615–620. doi: 10.1016/S1002-0160(11)60163-X

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xia Chen.

Additional information

Foundation item: Under the auspices of Wildlife Conservation and Management of National Forestry Bureau of China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, W., Qi, X., Lyu, J. et al. Characterization of microbial community structure in rhizosphere soils of Cowskin Azalea (Rhododendron aureum Georgi) on northern slope of Changbai Mountains, China. Chin. Geogr. Sci. 26, 78–89 (2016). https://doi.org/10.1007/s11769-015-0787-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11769-015-0787-5

Keywords

Navigation