Skip to main content
Log in

Lyapunov-based nonlinear model predictive control for the path following of bevel-tip flexible needles in 3D environment

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

This paper develops a Lyapunov-based nonlinear model predictive control (NMPC) method for the path-following task of bevel-tip flexible needle in 3D environments. First, a nonholonomic and nonlinear kinematic model of the bevel-tip flexible needle system is established to describe the needle inserting and steering motion. Then, an efficient NMPC strategy is designed to deal with the system nonlinearity based on the kinematic model and further guide the flexible needle to accurately track the desired 3-dimensional path. Specifically, the control Lyapunov function is also integrated into the NMPC framework to ensure the operational safety of the bevel-tip flexible needle system in human tissue. Finally, simulation experiments are carried out to demonstrate the effectiveness of the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

No datasets were generated or analyzed during the current study.

References

  1. Chevrie, J., Shahriari, N., Babel, M., Krupa, A., Misra, S.: Flexible needle steering in moving biological tissue with motion compensation using ultrasound and force feedback. IEEE Robot. Autom. Lett. 3(3), 2338–2345 (2018)

    Article  Google Scholar 

  2. Van De Berg, N.J., Van Gerwen, D.J., Dankelman, J., Van Den Dobbelsteen, J.J.: Design choices in needle steering-a review. IEEE/ASME Trans. Mechatron. 20(5), 2172–2183 (2014)

    Article  Google Scholar 

  3. Aggravi, M., Estima, D.A., Krupa, A., Misra, S., Pacchierotti, C.: Haptic teleoperation of flexible needles combining 3d ultrasound guidance and needle tip force feedback. IEEE Robot. Autom. Lett. 6(3), 4859–4866 (2021)

    Article  Google Scholar 

  4. Khadem, M., Fallahi, B., Rossa, C., Sloboda, R.S., Usmani, N., Tavakoli, M.: A mechanics-based model for simulation and control of flexible needle insertion in soft tissue. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 2264–2269. IEEE (2015)

  5. Zhu, C., Zhang, H., Qi, Z.: State feedback fault tolerant control for flexible bevel-tip needle based on proportional multiple-integral observer. In: 9th International Conference on Control, Automation and Robotics (ICCAR), pp. 61–66. IEEE (2023)

  6. Aghdam, A.N., Liu, P.X.: A novel path planner for steerable bevel-tip needles to reach multiple targets with obstacles. IEEE Trans. Instrum. Meas. 69(10), 7636–7645 (2020)

    Article  Google Scholar 

  7. Ju, Z., Zhang, H., Qi, Z., Luo, Q.: Path following model predictive control of duty-cycled spinning bevel tip needle. In: 3rd International Conference on Industrial Artificial Intelligence (IAI), pp. 1–6. IEEE (2021)

  8. Yamada, A., Naka, S., Nitta, N., Morikawa, S., Tani, T.: A loop-shaped flexible mechanism for robotic needle steering. IEEE Robot. Autom. Lett. 3(2), 648–655 (2017)

    Article  Google Scholar 

  9. Favaro, A., Segato, A., Muretti, F., De Momi, E.: An evolutionary-optimized surgical path planner for a programmable bevel-tip needle. IEEE Trans. Robot. 37(4), 1039–1050 (2021)

    Article  Google Scholar 

  10. Huo, B., Zhao, X., Han, J., Xu, W.: Closed-loop control of bevel-tip needles based on path planning. Robotica 36(12), 1857–1873 (2018)

    Article  Google Scholar 

  11. Huo, B., Zhao, X., Han, J., Xu, W.: Path-tracking control of bevel-tip needles using model predictive control. In: IEEE 14th International Workshop on Advanced Motion Control (AMC), pp. 197–202. IEEE (2016)

  12. Motaharifar, M., Talebi, H.A., Abdollahi, F., Afshar, A.: Nonlinear adaptive output-feedback controller design for guidance of flexible needles. IEEE/ASME Trans. Mechatron. 20(4), 1912–1919 (2014)

    Article  Google Scholar 

  13. Hans, S., Joseph, F.O.M.: Control of a flexible bevel-tipped needle using super-twisting controller based sliding mode observer. ISA Trans. 109, 186–198 (2021)

    Article  Google Scholar 

  14. Hans, S., Joseph, F.O.M.: Robust control of a bevel-tip needle for medical interventional procedures. IEEE/CAA J. Autom. Sin. 7(1), 244–256 (2019)

    Article  MathSciNet  Google Scholar 

  15. Abayazid, M., Roesthuis, R.J., Reilink, R., Misra, S.: Integrating deflection models and image feedback for real-time flexible needle steering. IEEE Trans. Robot. 29(2), 542–553 (2012)

    Article  Google Scholar 

  16. Xu, B., Ko, S.Y.: 3D feedback control using fuzzy logic for a curvature-controllable steerable bevel-tip needle. Mechatronics 68, 102368 (2020)

    Article  Google Scholar 

  17. Yao, Q., Zhang, X.: Duty-cycled spinning based 3D motion control approach for bevel-tipped flexible needle insertion. J. Mech. Med. Biol. 18(07), 1840017 (2018)

    Article  MathSciNet  Google Scholar 

  18. Khadem, M., Rossa, C., Usmani, N., Sloboda, R.S., Tavakoli, M.: Geometric control of 3d needle steering in soft-tissue. Automatica 101, 36–43 (2019)

    Article  MathSciNet  Google Scholar 

  19. Khadem, M., Rossa, C., Usmani, N., Sloboda, R.S., Tavakoli, M.: A two-body rigid/flexible model of needle steering dynamics in soft tissue. IEEE/ASME Trans. Mechatron. 21(5), 2352–2364 (2016)

    Article  Google Scholar 

  20. Webster, R.J., III., Kim, J.S., Cowan, N.J., Chirikjian, G.S., Okamura, A.M.: Nonholonomic modeling of needle steering. Int. J. Robot. Res. 25(5–6), 509–525 (2006)

    Article  Google Scholar 

  21. Magni, L., De Nicolao, G., Magnani, L., Scattolini, R.: A stabilizing model-based predictive control algorithm for nonlinear systems. Automatica 37(9), 1351–1362 (2001)

    Article  MathSciNet  Google Scholar 

  22. Oliveira Kothare, S.L., Morari, M.: Contractive model predictive control for constrained nonlinear systems. IEEE Trans. Autom. Control 45(6), 1053–1071 (2000)

    Article  MathSciNet  Google Scholar 

  23. Mhaskar, P., El-Farra, N.H., Christofides, P.D.: Stabilization of nonlinear systems with state and control constraints using Lyapunov-based predictive control. Syst. Control Lett. 55(8), 650–659 (2006)

    Article  MathSciNet  Google Scholar 

  24. Jiang, K., Hu, C., Yan, F.: Path-following control of autonomous ground vehicles based on input convex neural networks. Proc. Inst. Mech. Eng. Part D J. Autom. Eng. 236(13), 2806–2816 (2022)

    Article  Google Scholar 

  25. Shen, C., Shi, Y., Buckham, B.: Trajectory tracking control of an autonomous underwater vehicle using Lyapunov-based model predictive control. IEEE Trans. Ind. Electron. 65(7), 5796–5805 (2017)

    Article  Google Scholar 

  26. Luo, J., Li, Y., Liu, P., Ye, S., Feng, R., Wang, J.: Lyapunov based nonlinear model predictive control of wind power generation system with external disturbances. IEEE Access (2024). https://doi.org/10.1109/ACCESS.2024.3350204

    Article  Google Scholar 

  27. Heidarinejad, M., Liu, J., Christofides, P.D.: Lyapunov-based economic model predictive control of nonlinear systems. In: Proceedings of the 2011 American Control Conference, pp. 5195–5200. IEEE (2011)

  28. Liu, J., Pena, D.M., Christofides, P.D., Davis, J.F.: Lyapunov-based model predictive control of nonlinear systems subject to time-varying measurement delays. In: 47th IEEE Conference on Decision and Control, pp. 4632–4639. IEEE (2008)

Download references

Funding

This work was funded by the National Key Research and Development Program of China (Grant No.2018YFE0206900).

Author information

Authors and Affiliations

Authors

Contributions

Kai Jiang wrote the main manuscript and implemented the research work. Zhi Qi provided the main research idea. Chaojie Zhu helped with the simulation code. Hengkai Sun prepared the figures. Hui Zhang reviewed the manuscript and provided the funding.

Corresponding author

Correspondence to Zhi Qi.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, K., Qi, Z., Zhu, C. et al. Lyapunov-based nonlinear model predictive control for the path following of bevel-tip flexible needles in 3D environment. SIViP (2024). https://doi.org/10.1007/s11760-024-03184-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11760-024-03184-3

Keywords

Navigation