Skip to main content
Log in

A positional-aware attention PCa detection network on multi-parametric MRI

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

Prostate cancer (PCa) is the most prevalent cancer among the males. PCa detection based on multi-parametric magnetic resonance imaging (mpMRI) can provide precise target points for puncture robots to enhance the accuracy of biopsy procedures. Deep learning (DL) methods have been shown to have better performance than traditional methods on mpMRI-based PCa detection. However, most of the existing DL methods rely on the accurate segmentation of prostate regions, and the calibration of true labels requires time-consuming manual segmentation steps. Meanwhile, the interference of redundant information makes the DL model performance improvement limited. For these reasons, a novel positional-aware attention PCa detection network (PAPDN) is proposed. PAPDN can focus on the position features of PCa lesions and the correlation of mpMRI on channels. It can suppress the interference of redundant information generated by similar structures during PCa detection. The performance of PAPDN is evaluated with the prostate mpMRI dataset collected by Radboud University Medical Center (Radboudumc) in the Netherlands. The results show that PAPDN outperforms other similar algorithms on several rating metrics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of data and materials

Some of the data and materials supporting the results of this study can be obtained from the corresponding authors upon reasonable request. No datasets were generated or analyzed during the current study.

References

  1. Siegel, R.L., Miller, K.D., Wagle, N.S., Jemal, A.: Cancer statistics, 2023. CA Cancer J. Clin. 73, 17–48 (2023)

    Article  Google Scholar 

  2. Jiang, W., Wu, D., Dong, W., Ding, J., Ye, Z., Zeng, P., Gao, Y.: Design and validation of a nonparasitic 2r1t parallel hand-held prostate biopsy robot with remote center of motion. J. Mech. Robot. 16, 1–30 (2023)

    Google Scholar 

  3. Gavade, A., Nerli, R., Kanwal, N., Gavade, P., Pol, S., Rizvi, S.: Automated diagnosis of prostate cancer using mpMRI images: a deep learning approach for clinical decision support. Computers 12, 152 (2023)

    Article  Google Scholar 

  4. Weinreb, J.C., Barentsz, J.O., Choyke, P.L., Cornud, F., Haider, M.A., Macura, K.J., Margolis, D., Schnall, M.D., Shtern, F., Tempany, C.M., Thoeny, H.C., Verma, S.: PI-RADS prostate imaging: reporting and data system: 2015, version 2. Eur. Urol. 69, 16–40 (2016)

    Article  Google Scholar 

  5. Bertelli, E., Mercatelli, L., Marzi, C., Pachetti, E., Baccini, M., Barucci, A., Colantonio, S., Gherardini, L., Lattavo, L., Pascali, M., Agostini, S., Miele, V.: Machine and deep learning prediction of prostate cancer aggressiveness using multiparametric MRI. Front. Oncol. 11, 802964 (2022)

    Article  Google Scholar 

  6. R. Alkadi, A. El-Baz, F. Taher, N. Werghi, A 2.5d deep learning-based approach for prostate cancer detection on t2-weighted magnetic resonance imaging, Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) Vol. 11132 LNCS (2019), pp. 734–739

  7. Vos, P.C., Barentsz, J.O., Karssemeijer, N., Huisman, H.J.: Automatic computer-aided detection of prostate cancer based on multiparametric magnetic resonance image analysis. Phys. Med. Biol. 57, 1527–1542 (2012)

    Article  Google Scholar 

  8. Viswanath, S., Bloch, B.N., Chappelow, J., Patel, P., Rofsky, N., Lenkinski, R., Genega, E., Madabhushi, A.: Enhanced multi-protocol analysis via intelligent supervised embedding (empravise): detecting prostate cancer on multi-parametric MRI. In: Proceedings of SPIE-the International Society for Optical Engineering, vol. 7963, 79630U (2011)

  9. Tiwari, P., Kurhanewicz, J., Madabhushi, A.: Multi-kernel graph embedding for detection, Gleason grading of prostate cancer via MRI/MRS. Med. Image Anal. 17, 219–235 (2013)

    Article  Google Scholar 

  10. Niaf, E., Rouvière, O., Mège-Lechevallier, F., Bratan, F., Lartizien, C.: Computer-aided diagnosis of prostate cancer in the peripheral zone using multiparametric MRI. Phys. Med. Biol. 57, 3833–3851 (2012)

    Article  Google Scholar 

  11. Litjens, G., Debats, O., Barentsz, J., Karssemeijer, N., Huisman, H.: Computer-aided detection of prostate cancer in MRI. IEEE Trans. Med. Imaging 33, 1083–1092 (2014)

    Article  Google Scholar 

  12. Lemaitre, G., Marti, R., Rastgoo, M., Meriaudeau, F.: Computer-aided detection for prostate cancer detection based on multi-parametric magnetic resonance imaging. Ann. Int. Conf. IEEE Eng. Med. Biol. Soc. 2017, 3138–3141 (2017)

    Google Scholar 

  13. Wang, X., Yang, W., Weinreb, J., Han, J., Li, Q., Kong, X., Yan, Y., Ke, Z., Luo, B., Liu, T., Wang, L.: Searching for prostate cancer by fully automated magnetic resonance imaging classification: deep learning versus non-deep learning. Sci. Rep. 7, 15415 (2017)

    Article  Google Scholar 

  14. Vente, C.D., Vos, P., Hosseinzadeh, M., Pluim, J., Veta, M.: Deep learning regression for prostate cancer detection and grading in bi-parametric MRI. IEEE Trans. Biomed. Eng. 68, 374–383 (2021)

  15. Khosravi, P., Lysandrou, M., Eljalby, M., Li, Q., Kazemi, E., Zisimopoulos, P., Sigaras, A., Brendel, M., Barnes, J., Ricketts, C., Meleshko, D., Yat, A., McClure, T.D., Robinson, B.D., Sboner, A., Elemento, O., Chughtai, B., Hajirasouliha, I.: A deep learning approach to diagnostic classification of prostate cancer using pathology–radiology fusion. J. Magn. Reson. Imaging 54, 462–471 (2021)

    Article  Google Scholar 

  16. Saha, A., Hosseinzadeh, M., Huisman, H.: End-to-end prostate cancer detection in bpMRI via 3D CNNs: effects of attention mechanisms, clinical priori and decoupled false positive reduction. Med. Image Anal. 73 (2021)

  17. Hosseinzadeh, M., Saha, A., Brand, P., Slootweg, I., de Rooij, M., Huisman, H.: Deep learning-assisted prostate cancer detection on bi-parametric MRI: minimum training data size requirements and effect of prior knowledge. Eur. Radiol. 32, 2224–2234 (2022)

    Article  Google Scholar 

  18. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, IEEE, Salt Lake City, UT, 2018, pp. 7132–7141

  19. Woo, S., Park, J., Lee, J.-Y., Kweon, I.S.: Cbam: Convolutional block attention module. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) Computer Vision:– ECCV 2018, vol. 11211, pp. 3–19. Springer, Cham (2018)

    Chapter  Google Scholar 

  20. Hou, Q., Zhou, D., Feng, J.: Coordinate attention for efficient mobile network design. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 2021, pp. 13708–13717 (2021)

  21. Zhang, J., Li, X., Li, J., Liu, L., Xue, Z., Zhang, B., Jiang, Z., Huang, T., Wang, Y., Wang, C.: Rethinking mobile block for efficient attention-based models. arxiv:2301.01146 (2023a)

  22. Zhang, X., Liu, C., Yang, D., Song, T., Ye, Y., Li, K., Song, Y.: Rfaconv: Innovating spatial attention and standard convolutional operation. arxiv:2304.03198 (2023b)

  23. Yoo, S., Gujrathi, I., Haider, M.A., Khalvati, F.: Prostate cancer detection using deep convolutional neural networks. Sci. Rep. 9, 19518 (2019)

    Article  Google Scholar 

  24. Hao, R., Namdar, K., Liu, L., Haider, M.A., Khalvati, F.: A comprehensive study of data augmentation strategies for prostate cancer detection in diffusion-weighted MRI using convolutional neural networks. J. Digit. Imaging 34, 862–876 (2021)

    Article  Google Scholar 

  25. Tyagi, S., Tyagi, N., Choudhury, A., Gupta, G., Zahra, M.M.A., Rahin, S.A.: Identification and classification of prostate cancer identification and classification based on improved convolution neural network. Biomed. Res. Int. 2022, 1–10 (2022)

    Article  Google Scholar 

  26. Yang, E., Shankar, K., Kumar, S., Seo, C., Moon, I.: Equilibrium optimization algorithm with deep learning enabled prostate cancer detection on MRI images. Biomedicines 11, 3200 (2023)

    Article  Google Scholar 

Download references

Funding

This work was partially supported by the National Key R &D Funding under Grant No. 2018YFE0206900.

Author information

Authors and Affiliations

Authors

Contributions

WR and YC contributed to conceptualization, methodology, data processing, experimental validation and manuscript writing. DZ contributed to the modification of the manuscript.

Corresponding author

Correspondence to Dan Zhang.

Ethics declarations

Conflict of interest

The authors declare no Conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, W., Chen, Y. & Zhang, D. A positional-aware attention PCa detection network on multi-parametric MRI. SIViP (2024). https://doi.org/10.1007/s11760-024-03183-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11760-024-03183-4

Keywords

Navigation