Skip to main content
Log in

Enhancing image steganalysis via integrated reinforcement learning and dilated convolution techniques

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

In the wake of unparalleled expansion in digital communication platforms, the imperative to bolster security and privacy measures has escalated. Within this landscape, image steganalysis emerges as a pivotal domain committed to detecting concealed information embedded in image files. This academic article unveils a novel image steganalysis model, melding dilated convolutional methodologies with a state-of-the-art mutual learning-based artificial bee colony (ML-ABC) approach and reinforcement learning (RL). The architecture operates a consortium of convolutional neural networks, collaboratively deriving features. After derivation, these features are combined to simplify the subsequent classification task. A reinforcement learning-focused (RL-focused) algorithm is employed to address the challenges posed by uneven datasets. The learning path is conceived as a series of linked decision points, with each instance representing a unique state. The network acts as an agent, earning rewards or suffering consequences according to its ability to distinguish between less frequent and more frequent classes. To commence the initial weight training, a methodology grounded in ML-ABC is implemented. This tactic adeptly adjusts the optimal food source for solution candidates, intertwining elements of mutual learning tied to the initial weights. The efficacy of the model is rigorously evaluated utilizing the BossBase 1.01 and BOWS datasets. Thorough experimentation is conducted on the selected dataset, with the objective of identifying optimal parameter values, including the reward mechanism. Subsequent results prominently highlight the superiority of our proposed solution compared to alternative methods explored within this research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The authors do not have permissions to share data.

References

  1. You, W., Zhang, H., Zhao, X.: A Siamese CNN for image steganalysis. IEEE Trans. Inf. Forensics Secur. 16, 291–306 (2021). https://doi.org/10.1109/TIFS.2020.3013204

    Article  Google Scholar 

  2. Fridrich, J.: Steganography in Digital Media: Principles, Algorithms, and Applications. Cambridge University Press, Cambridge (2009)

    Book  Google Scholar 

  3. Dehdar, A., Keshavarz, A., Parhizgar, N.: Image steganalysis using modified graph clustering based ant colony optimization and random forest. Multimed. Tools. Appl. 82, 7401–7418 (2023). https://doi.org/10.1007/s11042-022-13599-0

    Article  Google Scholar 

  4. Wu, S., Zhong, S., Liu, Y.: Residual convolution network based steganalysis with adaptive content suppression. In: 2017 IEEE international conference on multimedia and expo (ICME), pp. 241–246. IEEE (2017)

  5. Maulana, M.S., Widianto, S.R., Sasongko, A.: Steganography based on the B217AN algorithm for secret messages on flip horizontal and resize image. World J. Adv. Eng. Technol. Sci. 9(1), 017–028 (2023)

    Article  Google Scholar 

  6. Xie, G., Ren, J., Marshall, S., Zhao, H., Li, R., Chen, R.: Self-attention enhanced deep residual network for spatial image steganalysis. Digit. Signal Process. 139, 104063 (2023). https://doi.org/10.1016/j.dsp.2023.104063

    Article  Google Scholar 

  7. Chen, H., Han, Q., Li, Q., Tong, X.: Image steganalysis with multi-scale residual network. Multimed. Tools Appl. 82, 22009–22031 (2023). https://doi.org/10.1007/s11042-021-11611-7

    Article  Google Scholar 

  8. Boroumand, M., Chen, M., Fridrich, J.: Deep residual network for steganalysis of digital images. IEEE Trans. Inf. Forensics Secur. 14, 1181–1193 (2019). https://doi.org/10.1109/TIFS.2018.2871749

    Article  Google Scholar 

  9. Tsang, C.F., Fridrich, J.: Steganalyzing images of arbitrary size with CNNs. Electron. Imaging 2018(7), 121-1–121-8 (2018)

    Article  Google Scholar 

  10. Moravvej, S.V., Kahaki, M.J.M., Sartakhti, M.S., Mirzaei, A.: A method based on attention mechanism using bidirectional long-short term memory (BLSTM) for question answering. In: 2021 29th Iranian Conference on Electrical Engineering (ICEE), pp. 460–464. IEEE (2021)

  11. Taherinavid, S., Moravvej, S.V., Chen, Y.-L., Yang, J., Ku, C.S., Yee, P.L.: Automatic transportation mode classification using a deep reinforcement learning approach with smartphone sensors. IEEE Access. 12, 514–533 (2024). https://doi.org/10.1109/ACCESS.2023.3346875

    Article  Google Scholar 

  12. Soleimani, M., Forouzanfar, Z., Soltani, M., Harandi, M.J.: Imbalanced multiclass medical data classification based on learning automata and neural network. EAI Endorsed Trans. AI Robot. (2023). https://doi.org/10.4108/airo.3526

    Article  Google Scholar 

  13. Han, H., Wang, W.-Y., Mao, B.-H.: Borderline-SMOTE: a new over-sampling method in imbalanced data sets learning. In: Huang, D.-S., Zhang, X.-P., Huang, G.-B. (eds.) Advances in Intelligent Computing, pp. 878–887. Springer, Berlin, Heidelberg (2005)

    Chapter  Google Scholar 

  14. Moravvej, S.V., Mousavirad, S.J., Oliva, D., Schaefer, G., Sobhaninia, Z.: An improved de algorithm to optimise the learning process of a bert-based plagiarism detection model. In: 2022 IEEE Congress on Evolutionary Computation (CEC), pp. 1–7. IEEE (2022)

  15. Elguea-Aguinaco, Í., Serrano-Muñoz, A., Chrysostomou, D., Inziarte-Hidalgo, I., Bøgh, S., Arana-Arexolaleiba, N.: A review on reinforcement learning for contact-rich robotic manipulation tasks. Robot. Comput. Integr. Manuf. 81, 102517 (2023). https://doi.org/10.1016/j.rcim.2022.102517

    Article  Google Scholar 

  16. Moerland, T.M., Broekens, J., Plaat, A., Jonker, C.M.: Model-based reinforcement learning: a survey. Found. Trends® Mach. Learn. 16(1), 1–118 (2023)

    Article  Google Scholar 

  17. Moravvej, S.V., Mousavirad, S.J., Oliva, D., Mohammadi, F.: A Novel Plagiarism Detection Approach Combining BERT-Based Word Embedding, Attention-Based LSTMs and an Improved Differential Evolution Algorithm (2023)

  18. Soltani, M., Kharoufeh, J.P., Khademi, A.: Structured replacement policies for offshore wind turbines. Probab. Eng. Inf. Sci. (2023). https://doi.org/10.1017/S0269964823000165

    Article  Google Scholar 

  19. Vakilian, S., Moravvej, S.V., Fanian, A.: Using the cuckoo algorithm to optimizing the response time and energy consumption cost of fog nodes by considering collaboration in the fog layer. In: 2021 5th International Conference on Internet of Things and Applications (IoT), pp. 1–5. IEEE (2021)

  20. Moravvej, S.V., Mirzaei, A., Safayani, M.: Biomedical text summarization using conditional generative adversarial network (CGAN). arXiv preprint arXiv:2110.11870 (2021)

  21. Hong, L., Modirrousta, M.H., Hossein Nasirpour, M., Mirshekari Chargari, M., Mohammadi, F., Moravvej, S.V., Rezvanishad, L., Rezvanishad, M., Bakhshayeshi, I., Alizadehsani, R.: GAN-LSTM-3D: an efficient method for lung tumour 3D reconstruction enhanced by attention-based LSTM. CAAI Trans. Intell. Technol. (2023). https://doi.org/10.1049/cit2.12223

    Article  Google Scholar 

  22. Vakilian, S., Moravvej, S.V., Fanian, A.: Using the artificial bee colony (ABC) algorithm in collaboration with the fog nodes in the Internet of Things three-layer architecture. In: 2021 29th Iranian Conference on Electrical Engineering (ICEE), pp. 509–513. IEEE (2021)

  23. Moravvej, S.V., Alizadehsani, R., Khanam, S., Sobhaninia, Z., Shoeibi, A., Khozeimeh, F., Sani, Z.A., Tan, R.-S., Khosravi, A., Nahavandi, S.: RLMD-PA: a reinforcement learning-based myocarditis diagnosis combined with a population-based algorithm for pretraining weights. Contrast Media Mol. Imaging (2022). https://doi.org/10.1155/2022/8733632

    Article  Google Scholar 

  24. Zareiamand, H., Darroudi, A., Mohammadi, I., Moravvej, S.V., Danaei, S., Alizadehsani, R.: Cardiac magnetic resonance imaging (CMRI) applications in patients with chest pain in the emergency department: a narrative review. Diagnostics 13, 2667 (2023)

    Article  Google Scholar 

  25. Soltani, M., Kharoufeh, J.P., Khademi, A.: Optimal call center staffing and pricing under QoS constraints. In: IIE Annual Conference. Proceedings, pp. 1–6. Institute of Industrial and Systems Engineers (IISE) (2023)

  26. Kumar, A., Rani, R., Singh, S.: A survey of recent advances in image steganography. Secur. Priv. 6, e281 (2023)

    Article  Google Scholar 

  27. Farooq, N., Selwal, A.: Image steganalysis using deep learning: a systematic review and open research challenges. J. Ambient. Intell. Humaniz. Comput. 14, 7761–7793 (2023)

    Article  Google Scholar 

  28. Meng, L., Jiang, X., Sun, T.: A review of coverless steganography. Neurocomputing 566, 126945 (2023)

    Article  Google Scholar 

  29. Van Schyndel, R.G., Tirkel, A.Z., Osborne, C.F.: A digital watermark. In: Proceedings of 1st International Conference on Image Processing, vol. 2, pp. 86–90. IEEE (1994).

  30. Cogranne, R., Zitzmann, C., Fillatre, L., Retraint, F., Nikiforov, I., Cornu, P.: A cover image model for reliable steganalysis. In: Information Hiding: 13th International Conference, IH 2011, Prague, Czech Republic, May 18–20, 2011, Revised Selected Papers 13, pp. 178–192. Springer (2011)

  31. Sedighi, V., Cogranne, R., Fridrich, J.: Content-adaptive steganography by minimizing statistical detectability. IEEE Trans. Inf. Forensics Secur. 11, 221–234 (2015)

    Article  Google Scholar 

  32. Holub, V., Fridrich, J.: Digital image steganography using universal distortion. In: Proceedings of the First ACM Workshop on Information Hiding and Multimedia Security, pp. 59–68 (2013)

  33. Shi, H., Dong, J., Wang, W., Qian, Y., Zhang, X.: SSGAN: Secure steganography based on generative adversarial networks. In: Advances in Multimedia Information Processing–PCM 2017: 18th Pacific-Rim Conference on Multimedia, Harbin, China, September 28–29, 2017, Revised Selected Papers, Part I 18, pp. 534–544. Springer (2018)

  34. Filler, T., Judas, J., Fridrich, J.: Minimizing additive distortion in steganography using syndrome-trellis codes. IEEE Trans. Inf. Forensics Secur. 6, 920–935 (2011)

    Article  Google Scholar 

  35. Pevný, T., Filler, T., Bas, P.: Using high-dimensional image models to perform highly undetectable steganography. In: Information Hiding: 12th International Conference, IH 2010, Calgary, AB, Canada, June 28–30, 2010, Revised Selected Papers 12, pp. 161–177. Springer (2010)

  36. Holub, V., Fridrich, J.: Designing steganographic distortion using directional filters. In: 2012 IEEE International Workshop on Information Forensics and Security (WIFS), pp. 234–239. IEEE (2012)

  37. Li, B., Wang, M., Huang, J., Li, X.: A new cost function for spatial image steganography. In: 2014 IEEE International Conference on Image Processing (ICIP), pp. 4206–4210. IEEE (2014)

  38. Hu, D., Wang, L., Jiang, W., Zheng, S., Li, B.: A novel image steganography method via deep convolutional generative adversarial networks. IEEE Access 6, 38303–38314 (2018)

    Article  Google Scholar 

  39. Tang, W., Tan, S., Li, B., Huang, J.: Automatic steganographic distortion learning using a generative adversarial network. IEEE Signal Process. Lett. 24, 1547–1551 (2017)

    Article  Google Scholar 

  40. Yang, J., Ruan, D., Huang, J., Kang, X., Shi, Y.-Q.: An embedding cost learning framework using GAN. IEEE Trans. Inf. Forensics Secur. 15, 839–851 (2019)

    Article  Google Scholar 

  41. Tang, W., Li, B., Tan, S., Barni, M., Huang, J.: CNN-based adversarial embedding for image steganography. IEEE Trans. Inf. Forensics Secur. 14, 2074–2087 (2019)

    Article  Google Scholar 

  42. Zhu, J., Kaplan, R., Johnson, J., Fei-Fei, L.: Hidden: Hiding data with deep networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 657–672 (2018)

  43. Kuznetsov, A., Luhanko, N., Frontoni, E., Romeo, L., Rosati, R.: Image steganalysis using deep learning models. Multimed. Tools Appl. (2023). https://doi.org/10.1007/s11042-023-17591-0

    Article  Google Scholar 

  44. Bravo-Ortiz, M.A., Mercado-Ruiz, E., Villa-Pulgarin, J.P., Hormaza-Cardona, C.A., Quiñones-Arredondo, S., Arteaga-Arteaga, H.B., Orozco-Arias, S., Cardona-Morales, O., Tabares-Soto, R.: CVTStego-Net: a convolutional vision transformer architecture for spatial image steganalysis. J. Inf. Secur. Appl. 81, 103695 (2024)

    Google Scholar 

  45. Zhou, Z., Chen, K., Hu, D., Shu, H., Coatrieux, G., Coatrieux, J.L., Chen, Y.: Global Texture Sensitive Convolutional Transformer for Medical Image Steganalysis (2024)

  46. Qian, Y., Dong, J., Wang, W., Tan, T.: Learning and transferring representations for image steganalysis using convolutional neural network. In: 2016 IEEE International Conference on Image Processing (ICIP), pp. 2752–2756. IEEE (2016)

  47. Vijjapu, A., Vinod, Y.S., Murty, S., Raju, B.E., Satyanarayana, B.V. V, Kumar, G.P.: Steganalysis using convolutional neural networks-Yedroudj net. In: 2023 International Conference on Computer Communication and Informatics (ICCCI), pp. 1–7. IEEE (2023)

  48. Liu, S., Zhang, C., Wang, L., Yang, P., Hua, S., Zhang, T.: Image steganalysis of low embedding rate based on the attention mechanism and transfer learning. Electronics (Basel) 12, 969 (2023)

    Google Scholar 

  49. Fu, T., Chen, L., Fu, Z., Yu, K., Wang, Y.: CCNet: CNN model with channel attention and convolutional pooling mechanism for spatial image steganalysis. J. Vis. Commun. Image Represent. 88, 103633 (2022)

    Article  Google Scholar 

  50. Jeyaprakash, H., Chokkalingam, B.S., Vivek, V., Mohan, S.: Stego detection: image steganalysis using a novel hidden stego visual geometry group-based CNN classification. J. Appl. Secur. Res. 18(4), 979–999 (2023)

    Google Scholar 

  51. Ntivuguruzwa, J.D.L.C., Ahmad, T.: A convolutional neural network to detect possible hidden data in spatial domain images. Cybersecurity. 6, 23 (2023)

    Article  Google Scholar 

  52. Wang, Y., Zhang, R., Liu, J.: RLS-DTS: reinforcement-learning linguistic steganalysis in distribution-transformed scenario. IEEE Signal Process. Lett. (2023). https://doi.org/10.1109/LSP.2023.3310380

    Article  Google Scholar 

  53. Yang, J., Lu, B., Xiao, L., Kang, X., Shi, Y.-Q.: Reinforcement learning aided network architecture generation for JPEG image steganalysis. In: Proceedings of the 2020 ACM Workshop on Information Hiding and Multimedia Security, pp. 23–32 (2020)

  54. Reinel, T.-S., Brayan, A.-A.H., Alejandro, B.-O.M., Alejandro, M.-R., Daniel, A.-G., Alejandro, A.-G.J., Buenaventura, B.-J.A., Simon, O.-A., Gustavo, I., Raul, R.-P.: GBRAS-Net: a convolutional neural network architecture for spatial image steganalysis. IEEE Access 9, 14340–14350 (2021)

    Article  Google Scholar 

  55. Naqvi, S.M.A., Shabaz, M., Khan, M.A., Hassan, S.I.: Adversarial attacks on visual objects using the fast gradient sign method. J. Grid Comput. 21, 52 (2023)

    Article  Google Scholar 

  56. Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D., Grad-cam: visual explanations from deep networks via gradient-based localization. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 618–626 (2017)

  57. Özdemir, Ö., Sönmez, E.B.: Weighted cross-entropy for unbalanced data with application on covid x-ray images. In: 2020 Innovations in Intelligent Systems and Applications Conference (ASYU), pp. 1–6. IEEE (2020)

  58. Huang, F., Li, J., Zhu, X.: Balanced symmetric cross entropy for large scale imbalanced and noisy data. arXiv preprint arXiv:2007.01618 (2020)

  59. Li, X., Sun, X., Meng, Y., Liang, J., Wu, F., Li, J.: Dice loss for data-imbalanced NLP tasks. arXiv preprint arXiv:1911.02855 (2019)

  60. Salehi, S.S.M., Erdogmus, D., Gholipour, A.: Tversky loss function for image segmentation using 3D fully convolutional deep networks. In: International Workshop on Machine Learning in Medical Imaging, pp. 379–387. Springer (2017)

  61. Taghanaki, S.A., Zheng, Y., Zhou, S.K., Georgescu, B., Sharma, P., Xu, D., Comaniciu, D., Hamarneh, G.: Combo loss: Handling input and output imbalance in multi-organ segmentation. Comput. Med. Imaging Graph. 75, 24–33 (2019)

    Article  Google Scholar 

Download references

Funding

This work was supported by the Higher Vocational Education Reform Project of Henan Province (No 2021SJGLX755).

Author information

Authors and Affiliations

Authors

Contributions

Yuan Sun: Writing-Original draft preparation, Conceptualization, Supervision, Project administration.

Corresponding author

Correspondence to Yuan Sun.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethical approval

The research paper has received ethical approval from the institutional review board, ensuring the protection of participants’ rights and compliance with the relevant ethical guidelines.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 241 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Y. Enhancing image steganalysis via integrated reinforcement learning and dilated convolution techniques. SIViP (2024). https://doi.org/10.1007/s11760-024-03113-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11760-024-03113-4

Keywords

Navigation