Skip to main content
Log in

Robust joint learning of superpixel generation and superpixel-based image segmentation using fuzzy C-multiple-means clustering

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

In recent years, many superpixel-based image segmentation algorithms have been presented. However, most of these algorithms face issues of high model complexity and weak robustness. There are two main reasons for this. On the one hand, the traditional superpixel-based image segmentation algorithm constructs two different models to complete the tasks of superpixel generation and superpixel-based image segmentation, which significantly increase the complexity of the algorithm. On the other hand, the segmentation results are largely affected by the characteristics of the generated superpixels, and many superpixel generation algorithms are sensitive to noise, resulting in poor robustness. Therefore, this paper proposes a novel superpixel-based fuzzy C-multiple-means clustering algorithm, which generates superpixels and segments superpixel image in one step to reduce the complexity of the algorithm. Meanwhile, the proposed algorithm introduces local spatial information of pixel, enhancing the robustness of superpixel generation to noise. In addition, the generated superpixels have centroid shift property, further improving the algorithm’s detail-preservation ability and robustness. Experimental results show that this algorithm outperforms many state-of-the-art superpixel-related and unrelated fuzzy clustering algorithms in noisy image segmentation, and consumes less time when providing similar segmentation results. Overall, the work in this paper will greatly promote the development of superpixel-based image segmentation theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The dataset used and analyzed in this paper is publicly available at: https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/. http://host.robots.ox.ac.uk/pascal/VOC/voc2012/index.html. https://figshare.com/articles/dataset/MSRC_v2_image_dataset/6075788

References

  1. Xu, Z., Zuo, S., Lam, E.Y., Lee, B., Chen, N.: AutoSegNet: an automated neural network for image segmentation. IEEE Access. 8, 92452–92461 (2020)

    Google Scholar 

  2. Gao, J.Q., Wang, B.B., Wang, Z.Y., Wang, Y.F., Kong, F.Z.: A wavelet transform-based image segmentation method. Optik 208, 164123 (2020)

    Article  ADS  Google Scholar 

  3. Lei, X., Ouyang, H.: Image segmentation algorithm based on improved fuzzy clustering. Cluster Comput. 22, 13911–13921 (2019)

    Article  Google Scholar 

  4. Ning, G.Y.: Two-dimensional Otsu multi-threshold image segmentation based on hybrid whale optimization algorithm. Multimed Tools Appl. 82(10), 15007–15026 (2023)

    Article  Google Scholar 

  5. Cong, L., Ding, S.F., Wang, L.J., Zhang, A.J., Jia, W.K.: Image segmentation algorithm based on superpixel clustering. IET Image Process. 12(11), 2030–2035 (2018)

    Article  Google Scholar 

  6. Madhumitha, S., Manikandan, M.: Quantitative analysis of marker-based watershed image segmentation. Curr. Sci. 114(5), 1017–1013 (2018)

    Article  Google Scholar 

  7. Ren, X.F., Malik, J.: Learning a classification model for segmentation. Proc. IEEE/CVF Int. Conf. Comput. Vis. 1, 10–17 (2003)

    Article  Google Scholar 

  8. Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., Suesstrunk, S.: SLIC superpixels compared to state-of-the-art superpixel methods. IEEE Trans. Pattern Anal. Mach. Intell. 34(11), 2274–2282 (2012)

    Article  PubMed  Google Scholar 

  9. Chen, J., Li, Z., Huang, B.: Linear spectral clustering superpixel. IEEE Trans. Image Process. 26(7), 3317–3330 (2017)

    Article  ADS  MathSciNet  PubMed  Google Scholar 

  10. Xiao, X., Zhou, Y., Gong, Y.: Content-adaptive superpixel segmentation. IEEE Trans. Image Process. 27(6), 2883–2896 (2018)

    Article  ADS  MathSciNet  PubMed  Google Scholar 

  11. Guo, Y., Jiao, L., Wang, S., Wang, S., Liu, F., Hua, W.: Fuzzy superpixels for polarimetric SAR images classification. IEEE Trans. Fuzzy Syst. 26(5), 2846–2860 (2018)

    Article  Google Scholar 

  12. Wu, C., Zheng, J., Feng, Z., Zhang, H., Zhang, L., Cao, J., Zhang, H.: Fuzzy SLIC: fuzzy simple linear iterative clustering. IEEE Trans. Circuits Syst. Video Technol. 31(6), 2114–2124 (2021)

    Article  Google Scholar 

  13. Ng, T.C., Choy, S.K.: Variational fuzzy superpixel segmentation. IEEE Trans. Fuzzy Syst. 30(1), 14–26 (2022)

    Article  Google Scholar 

  14. Barbato, M.P., Napoletano, P., Piccoli, F., Schettini, R.: Unsupervised segmentation of hyperspectral remote sensing images with superpixels. Remote Sens Appl. 28, 100823 (2022)

    Google Scholar 

  15. Kanezaki A.: Unsupervised image segmentation by backpropagation. In: Proc. IEEE Int. Conf. Acoust. Speech Signal Process. pp. 1543–1547 (2018)

  16. Yu, C.H., Ding, J.J.: Hierarchical DNN-based image segmentation algorithm using texton, superpixels, and layer-adaptive loss functions. In: Int. Conf. Signal-Image Technol. Internet-Based Syst. pp. 135–139 (2022)

  17. Lin, Q., Zhong W., Lu, J.: Deep superpixel cut for unsupervised image segmentation. In: Proc. Int. Conf. Pattern Recognit. pp. 8870–8876 (2021)

  18. Tian, X.L., Jiao, L.C., Yi, L., Guo, K.W., Zhang, X.H.M.: The image segmentation based on optimized spatial feature of superpixel. J. Vis. Commun. Image Represent. 26, 146–160 (2015)

    Article  Google Scholar 

  19. Lei, T., Jia, X., Zhang, Y., Liu, S., Meng, H., Nandi, A.K.: Superpixel-based fast fuzzy C-means clustering for color image segmentation. IEEE Trans. Fuzzy Syst. 27(9), 1753–1766 (2019)

    Article  Google Scholar 

  20. Chen, L., Zhao, Y.P., Zhang, C.B.: Efficient kernel fuzzy clustering via random Fourier superpixel and graph prior for color image segmentation. Eng. Appl. Artif. Intell. 116, 105335 (2022). https://doi.org/10.1016/j.engappai.2022.105335

    Article  Google Scholar 

  21. Yang, X., Zhu, M., Sun, B., Wang, Z., Nie, F.: Fuzzy C-multiple-means clustering for hyperspectral image. IEEE Geosci. Remote Sens. Lett. 20, 1–5 (2023)

    Article  CAS  Google Scholar 

  22. Lei, T., Jia, X., Zhang, Y., He, L., Meng, H., Nandi, A.K.: Significantly fast and robust fuzzy c-means clustering algorithm based on morphological reconstruction and membership filtering. IEEE Trans. Fuzzy Syst. 26(5), 3027–3041 (2018)

    Article  Google Scholar 

  23. Krinidis, S., Chatzis, V.: A robust fuzzy local information C-means clustering algorithm. IEEE Trans. Image Process. 19(5), 1328–1337 (2010)

    Article  ADS  MathSciNet  PubMed  Google Scholar 

  24. Gong, M., Liang, Y., Shi, J., Ma, W., Ma, J.: Fuzzy c-means clustering with local information and kernel metric for image segmentation. IEEE Trans. Image Process. 22(2), 573–584 (2013)

    Article  ADS  MathSciNet  PubMed  Google Scholar 

  25. Wang, Q., Wang, X., Fang, C., Yang, W.: Robust fuzzy C-means clustering algorithm with adaptive spatial intensity constraint and membership linking for noise image segmentation. Appl. Soft Comput. 92, 106318 (2020)

    Article  Google Scholar 

  26. Ghosh, S., Hazarika, A.P., Chandra, A., Mudi, R.K.: Adaptive neighbor constrained deviation sparse variant fuzzy C-means clustering for brain MRI of AD subject. Vis. Inform. 5(4), 67–80 (2021)

    Article  Google Scholar 

  27. Wu, C., Zhang, L., Zhang, H., Yan, H.: Improved superpixel-based fast fuzzy C-Means clustering for image segmentation. In: Proc. IEEE Int. Conf. Image Process, pp. 1455–1459 (2019)

  28. Arbeláez, P., Maire, M., Fowlkes, C., Malik, J.: Contour detection and hierarchical image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 33(5), 898–916 (2011)

    Article  PubMed  Google Scholar 

  29. Winn, J., Criminisi, A., Minka, T.: Object categorization by learned universal visual dictionary. Proc. IEEE/CVF Int. Conf. Comput. Vis. 1(2), 1800–1807 (2005)

    Article  Google Scholar 

  30. Everingham, M., Eslami, S.M.A., Van Gool, L., et al.: The PASCAL visual object classes challenge: a retrospective. Int. J. Comput. Vis. 111, 98–136 (2015)

    Article  Google Scholar 

  31. Gao, Y., Wang, Z., Xie, J., Pan, J.: A new robust fuzzy C-means clustering method based on adaptive elastic distance. Knowl. Based Syst. 237, 107769 (2022)

    Article  Google Scholar 

  32. Alazzam, M., Zhang, Q.F., Yun, D., Wei, Z.Q., Liu, H.P., Yang, X.X., Zhao, D.F.: Spine medical image segmentation based on deep learning. J. Healthc. Eng. 2021, 5596820 (2021)

    Google Scholar 

  33. Zhao, C., Shuai, R., Ma, L., Liu, W.J., Wu, M.L.: Segmentation of skin lesions image based on U-Net + +. Multimed. Tools Appl. 81, 8691–8717 (2022)

    Article  Google Scholar 

  34. Huang, C.Y., Li, X.R., Wen, Y.L.: AN OTSU image segmentation based on fruitfly optimization algorithm. Alex. Eng. J. 60(1), 183–188 (2021)

    Article  Google Scholar 

  35. Yang, F., Zamzmi, G., Angara, S., Rajaraman, S., Aquilina, A., Xue, Z.Y.: Assessing inter-annotator agreement for medical image segmentation. IEEE Access. 11, 21300–21312 (2023)

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

CW: Investigation; Data analysis; Validation; Methodology; Software; Writing-original draft. JZ: Software; Methodology; Data analysis; Formal analysis; Writing-original draft.

Corresponding author

Correspondence to Jingtian Zhao.

Ethics declarations

Conflict of interest

The authors have declared no conflict of interest. Non-financial competing of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (DOCX 4994 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, C., Zhao, J. Robust joint learning of superpixel generation and superpixel-based image segmentation using fuzzy C-multiple-means clustering. SIViP 18, 2345–2354 (2024). https://doi.org/10.1007/s11760-023-02911-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-023-02911-6

Keywords

Navigation