Skip to main content
Log in

Multi-classification of high-frequency oscillations in intracranial EEG signals based on CNN and data augmentation

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

Interictal high-frequency oscillations (HFOs) recorded in intracranial electroencephalographic (iEEG) signals are reliable biomarkers for the epileptogenic zone. Visual identification of these particular events is manually time-consuming and is subject to clinicians’ expertise. Moreover, differentiating them from other transient events such as interictal epileptic spikes (IESs) presents a considerable challenge. Hence, various approaches have been developed with the aim of extracting automatically discriminant features for HFOs and IESs events. Typically, these approaches are based on machine learning (ML) algorithms, but their efficiency strongly depends on the computed features. To address this limitation, we explore deep learning (DL), as a powerful framework, for the classification of HFOs and IESs and propose a novel convolutional neural network (CNN) architecture for HFOs multi-classification. Time–frequency (TF)-based images, computed using the Stockwell transform of the events of interest, are used as inputs to the CNN-based approach. Furthermore, data augmentation (DA) is adopted to improve the generalization of the proposed CNN model. The numerical simulations on epileptic iEEG signals demonstrate that the proposed approach yields superior results when the DA is employed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data that have been used are confidential.

References

  1. Jacobs, J., Staba, R., Asano, E., Otsubo, H., Wu, J.Y., Zijlmans, M., Mohamed, I., Kahane, P., Dubeau, F., Navarro, V., Gotman, J.: High-frequency oscillations (HFOs) in clinical epilepsy. Prog. Neurobiol.. Neurobiol. 98(3), 302–315 (2012). https://doi.org/10.1016/j.pneurobio.2012.03.001

    Article  CAS  Google Scholar 

  2. Peng, G., Nourani, M., Harvey, J., Dave, H.: Feature selection using F-statistic values for EEG signal analysis. In: 42th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), pp. 5963–5966 (2020)

  3. Zijlmans, M., Jiruska, P., Zelmann, R., Leijen, F.S.S., Jefferys, J., Gorman, J.: High-frequency oscillations as a new biomarker in epilepsy. Ann. Neurol. 71(2), 169–178 (2012). https://doi.org/10.1002/ana.22548

    Article  PubMed  PubMed Central  Google Scholar 

  4. Jrad, N., Kachenoura, A., Merlet, I., Bartolomei, F., Nica, A., Biraben, A., Wendling, F.: Automatic detection and classification of high-frequency oscillations in depth-EEG signals. IEEE Trans. Biomed. Eng. 64(9), 2230–2240 (2017)

    Article  PubMed  Google Scholar 

  5. Roehri, N., Bartolomei, F.: Are high-frequency oscillations better biomarkers of the epileptogenic zone than spikes? Curr. Opin. Neuro. 17(1), 213–219 (2019)

    Article  Google Scholar 

  6. Lachner-Piza, D., Jacobs, J., Bruder, J.C., Schulze-Bonhage, A., Stieglitz, T., Dümpelmann, M.: Automatic detection of high-frequency-oscillations and their sub-groups co-occurring with interictal-epileptic-spikes. J. Neural. Eng. 17(1) (2020)

  7. Sciaraffa, N., Klados, M.A., Borghini, G., Flumeri, G.D., Babiloni, F., Aricò, P.: Double-step machine learning based procedure for HFOs detection and classification. Brain 10(4) (2020)

  8. Blanco, J.A., Stead, M., Krieger, A., Viventi, J., Marsh, W.R., Lee, K.H., Worrell, G.A., Litt, B.: Unsupervised classification of high-frequency oscillations in human neocortical epilepsy and control patients. J. Neurophysiol.Neurophysiol. 104(5), 2900–2912 (2010)

    Article  Google Scholar 

  9. Liu, S., Sha, Z., Sencer, A., Aydoseli, A., Bebek, N., Abosch, A., Henry, T., Gurses, C., Ince, N.F.: Exploring the time-frequency content of high frequency oscillations for automated identification of seizure onset zone in epilepsy. J. Neural Eng. 13(2) (2016)

  10. Shin, H.C., Roth, H.R., Gao, M., Lu, L., Xu, Z., Nogues, I., Yao, J., Mollura, D., Summers, R.M.: Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning. IEEE Trans. Med. Imaging 35(5), 1285–1298 (2016)

    Article  PubMed  Google Scholar 

  11. Bou Nassif, A., Shahin, I., Attili, I., Azzeh, M., Shaalan, K.: Speech recognition using deep neural networks: a systematic review. IEEE Access. 7, 19143–19165 (2019)

    Article  Google Scholar 

  12. Ahad Tawhid, M.N., Siuly, S., Wang, H., Whittaker, F., Wang, K., Zang, Y.: A spectrogram image based intelligent technique for automatic detection of autism spectrum disorder from EEG. PLoS ONE 16(6), 2021 (2019). https://doi.org/10.1371/journal.pone.0253094.eCollection

    Article  Google Scholar 

  13. Rashed-Al-Mahfuz, M., Moni, M.A., Uddin, S., Alyami, S.A., Summers, M.A., Eapen, V.: A deep convolutional neural network method to detect seizures and characteristic frequencies using epileptic electroencephalogram (EEG) data. IEEE J. Trans. Eng. Health Med. 9, 1–12 (2021)

    Google Scholar 

  14. Soleimani, M., Vahidi, A., Vaseghi, B.: Two-dimensional stockwell transform and deep convolutional neural network for multi-class diagnosis of pathological brain. IEEE Trans. Neural Syst. Rehabil. Eng.Rehabil. Eng. 29, 163–172 (2021)

    Article  Google Scholar 

  15. Sun, J., Cao, R., Zhou, M., Hussain, W., Wang, B., Xue, J., Xiang, J.: Hybrid deep neural network for classification of schizophrenia using EEG Data. Sci. Rep. 11(1), 4706 (2021). https://doi.org/10.1038/s41598-021-83350-6

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  16. Jadhav, P., Rajguru, G., Datta, D., Mukhopadhyay, S.: Automatic sleep stage classification using time–frequency images of CWT and transfer learning using convolution neural network. Biocybern. Biomed. Eng. 40(1), 494–504 (2020)

    Article  Google Scholar 

  17. Zuo, R., Wei, J., Li, X., Li, C., Zhao, C., Ren, Z., Liang, Y., Geng, X., Jiang, C., Yang, X., Zhang, X.: (2019) Automated detection of high-frequency oscillations in epilepsy based on a convolutional neural network. Front. Comput. Neurosci.Comput. Neurosci. 13, 6 (2019). https://doi.org/10.3389/fncom.2019.00006.eCollection

    Article  Google Scholar 

  18. Lai, D., Zhang, X., Ma, K., Chen, Z., Chen, W., Zhang, H., Yuan, D.L.: Automated detection of high frequency oscillations in intracranial eeg using the combination of short-time energy and convolutional neural networks. IEEE Access. 7, 82501–82511 (2019)

    Article  Google Scholar 

  19. Zhao, B., Hu, W., Zhang, C., Wang, X., Yao, W., Liu, C., Mo, J., Yang, X., Ma, Y., Shao, X., Zhang, K., Zhang, J.: Integrated automatic detection, classification and imaging of high frequency oscillations with stereoelectroencephalography. Front. Neurosci.Neurosci. 14, 465 (2020). https://doi.org/10.3389/fnins.2020.00546

    Article  Google Scholar 

  20. Nadalin, J.K., Eden, U.T., Han, X., Richardson, R.M., Chu, C.J., Kramer, M.A.: Application of a convolutional neural network for fully-automated detection of spike ripples in the scalp electroencephalogram. J. Neurosci.Neurosci. 360, 109239 (2021). https://doi.org/10.1016/j.jneumeth.2021.109239

    Article  Google Scholar 

  21. Katz, J., Abel, T.J.: Stereoelectroencephalography versus subdural electrodes for localization of the epileptogenic zone: what is the evidence? Neurotherapeutics 16, 59–66 (2019). https://doi.org/10.1007/s13311-018-00703-2

    Article  PubMed  PubMed Central  Google Scholar 

  22. Peng, G., Nourani, M., Dave, H., Harvey, J.: Modeling and analysis of seizure network using SEEG for pre-surgery evaluation. In: 22nd IEEE International Conference on Bioinformatics and Bioengineering (BIBE), pp. 327–332 (2022).

  23. Stockwell, R.G., Mansinha, L., Lowe, R.P.: Localization of the complex spectrum: the S transform. IEEE Trans. Signal Process. 44(4), 998–1001 (1996)

    Article  ADS  Google Scholar 

  24. Krikid, F., Karfoul, A., Chaibi, S., Kachenoura, A., Nica, A., Kachouri, A., Le Bouquin Jeannès, R.: Classification of high frequency oscillations in intracranial EEG signals based on coupled time-frequency and image-related features. Biomed. Signal Proc. Con. 73(3)

  25. Burnos, S., Hilfiker, P., Sürücü, O., Scholkmann, F., Krayenbühl, N., Grunwald, T., Sarthein, J.: Human intracranial high frequency oscillations (HFOs) detected by automatic time-frequency analysis. PLoS ONE 9(4), e94381 (2014). https://doi.org/10.1371/journal.pone.0094381

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  26. Migliorelli, C., Bachiller, A., Alonso, J.F., Romero, S., Aparicio, J., Van Jacobs-Le, J., Mañanas, M.A., San Antonio-Arce, V.: SGM: a novel time-frequency algorithm based on unsupervised learning improves high-frequency oscillation detection in epilepsy. J. Neural Eng. 17(2), 026032 (2020). https://doi.org/10.1088/1741-2552/ab8345

    Article  ADS  PubMed  Google Scholar 

  27. Jmour, N., Zayen, S., Abdelkarim, A.: Convolutional neural networks for image classification. In: International Conference on Advanced Systems and Electric Technologies (IC_ASET), pp. 397–402 (2018)

  28. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., Rabinovich, R.: Going deeper with convolutions. IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–9 (2015)

  29. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv:1409.1556. [Online]. http://arxiv.org/abs/1409.1556 (2014)

  30. Shorten, C., Khoshgoftaar, T.M.: A survey on image data augmentation for deep learning. J Big Data 60(6) (2019)

  31. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: Proceedings of the 32nd International Conference on Machine Learning (Lille), pp. 448–456 (2015)

  32. Zhang, K., Xu, G., Han, Z., Ma, K., Zheng, X., Chen, L., Duan, N., Zhang, S.: Data augmentation for motor imagery signal classification based on a hybrid neural network. Sensors 20, 6 (2020). https://doi.org/10.3390/s20164485

    Article  Google Scholar 

  33. Ssekidde, P., Steven Eyobu, O., Seog Han, D., Oyana, T.J.: Augmented CWT features for deep learning-based indoor localization using WiFi RSSI data. Appl. Sci. 11(4) (2021)

  34. Garcea, F., Serra, A., Lamberti, F., Morra, L.: Data augmentation for medical imaging: a systematic literature review. Comput. Biol. Med.. Biol. Med. 152, 106391 (2023). https://doi.org/10.1016/j.compbiomed.2022.106391

    Article  Google Scholar 

  35. Khosla, C., Saini, B.S. (2020) Enhancing performance of deep learning models with different data augmentation techniques: a survey. In: International Conference on Intelligent Engineering and Management (ICIEM), pp. 79–85

  36. Moreno-Barea, F.J., Strazzera, F., Jerez, J.M., Urda, D., Franco, L.: Forward noise adjustment scheme for data augmentation. In: IEEE Symposium Series on Computational Intelligence (SSCI), pp. 728–734 (2018).

Download references

Acknowledgements

The study presented in this paper was conducted as a component of the PHC (Partenariat Hubert Curien) Project CREDIADIC No. 41711PK, CMCU Code 19G1411.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: [Fatma Krikid]; Methodology: [Fatma Krikid, Ahmad Karfoul]; Formal analysis and investigation: [Fatma Krikid, Ahmad Karfoul]; Writing - original draft preparation: [Fatma Krikid]; Writing - review and editing: [Ahmad Karfoul, Sahbi Chaibi, Régine Le Bouquin Jeannès, Abdennaceur Kachouri]; Resources: [Anca Nica, Amar Kachenoura], Supervision: [Ahmad Karfoul, Régine Le Bouquin Jeannès].

Corresponding author

Correspondence to Fatma Krikid.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 17 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krikid, F., Karfoul, A., Chaibi, S. et al. Multi-classification of high-frequency oscillations in intracranial EEG signals based on CNN and data augmentation. SIViP 18, 1099–1109 (2024). https://doi.org/10.1007/s11760-023-02808-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-023-02808-4

Keywords

Navigation