Skip to main content
Log in

Reconstruction of signals with sparse representation in optimally dilated Hermite basis

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

Compressive sensing (CS) provides a set of powerful techniques for the reconstruction of signals with a sparse representation in some particular domain, based on a reduced number of available samples (measurements). The CS application on real-life signals is directly affected by the existence of a basis or a dictionary in which the signal is sparse or highly concentrated (approximately sparse). Motivated by the fact that the time-axis scaling (dilation) factor of Hermite functions (HF) considerably affects the signal sparsity and concentration, in this paper, we propose a CS framework for the signal reconstruction based on a matching pursuit approach using an optimal dilation factor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Sandryhaila, A., Saba, S., Puschel, M., Kovacevic, J.: Efficient compression of QRS complexes using Hermite expansion. IEEE Trans. Signal Proccess. 60(2), 947–955 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  2. Sandryhaila, A., Kovacevic, J., Püschel, M.: Compression of QRS complexes using Hermite expansion. In: Proceedings of the International Conference on Acoustics Speech and Signal Processing, pp. 581–584. (2011)

  3. Márquez, D.G., Otero, A., García, C.A., Presedo, J.: A study on the representation of QRS complexes with the optimum number of Hermite functions. Biomed. Signal Process. Control 22, 11–18 (2015)

    Article  Google Scholar 

  4. Mahadevan, A., Acharya, S., Sheffer, D.B., Mugler, D.H.: Ballistocardiogram artifact removal in EEG-fMRI signals using discrete Hermite transforms. IEEE J. Sel. Top. Signal Process. 2(6), 839–853 (2008)

    Article  Google Scholar 

  5. Brajović, M., Orović, I., Daković, M., Stanković, S.: Gradient-based signal reconstruction algorithm in the Hermite transform domain. Electron. Lett. 52(1), 41–43 (2016)

    Article  Google Scholar 

  6. Brajović, M., Orović, I., Daković, M., Stanković, S.: On the parameterization of Hermite transform with application to the compression of QRS complexes. Signal Process 131, 113–119 (2017)

    Article  Google Scholar 

  7. Conte, L.R.L., Merletti, R., Sandri, G.V.: Hermite expansion of compact support waveforms: applications to myoelectric signals. IEEE Trans. Biomed. Eng. 41(12), 1147–1159 (1994)

    Article  Google Scholar 

  8. Laguna, P., Jané, R., Olmos, S., Thakor, N.V., Rix, H., Caminal, P.: Adaptive estimation of QRS complex wave features of ECG signal by the Hermite model. Med. Biol. Eng. Comput. 34(1), 58–68 (1996)

    Article  Google Scholar 

  9. Brajović, M., Orović, I., Beko, M., Stanković, S.: Parameter optimization of orthogonal discrete Hermite transform formed using eigenvectors of a symmetric tridiagonal matrix. Digital Signal Process. 117, 103140 (2021). https://doi.org/10.1016/j.dsp.2021.103140

    Article  Google Scholar 

  10. Ghavami, M., Michael, L.B., Kohno, R.: Ultra Wideband Signals and Systems in Communication Engineering, 2nd edn. Wiley, New York (2007)

    Book  Google Scholar 

  11. Brajović, M., Orović, I., Daković, M., Stanković, S.: Compressive sensing of sparse signals in the Hermite transform basis. IEEE Trans. Aerosp. Electron. Syst. 54(2), 950–967 (2018)

    Article  Google Scholar 

  12. Clary, S., Mugler, D.H.: Shifted Fourier matrices and their tridiagonal commutors. SIAM J. Matrix Anal. Appl. 24(3), 809–821 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  13. de Oliveira Neto, J.R., Lima, J.B.: Discrete fractional Fourier transforms based on closed-form Hermite–Gaussian-like DFT eigenvectors. IEEE Trans. Signal Process. 65(23), 6171–6184 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  14. Pei, S.C., Lai, Y.C.: Signal scaling by centered discrete dilated Hermite functions. IEEE Trans. Signal Process. 60(1), 498–503 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kuznetsov, A., Kwaśnicki, M.: Minimal Hermite-type eigenbasis of the discrete Fourier transform. J Fourier Anal Appl 25, 1053–1079 (2019). https://doi.org/10.1007/s00041-018-9600-z

    Article  MathSciNet  MATH  Google Scholar 

  16. Lagerholm, M., Peterson, C., Braccini, G., Edenbranhdt, L., Sörnmo, L.: Clustering ECG complexes using Hermite functions and self-organizing maps. IEEE Trans. Biomed. Eng. 47(7), 838–848 (2000)

    Article  Google Scholar 

  17. Lazaridis, P., Debarge, G., Gallion, P.: Discrete orthogonal Gauss–Hermite transform for optical pulse propagation analysis. J. Opt. Soc. Am. B 20, 1508–1513 (2003)

    Article  MATH  Google Scholar 

  18. Park, W., Leibon, G., Rockmore, D.N., Chirikjian, G.S.: Accurate image rotation using Hermite expansions. IEEE Trans. Image Process. 18(9), 1988–2003 (2009). https://doi.org/10.1109/TIP.2009.2024582

    Article  MathSciNet  MATH  Google Scholar 

  19. Leibon, G., Rockmore, D.N., Park, W., Taintor, R., Chirikjian, G.S.: A fast Hermite transform. Theor. Comput. Sci. 409(2), 211–228 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kortchagine, D., Krylov, A.: Image Database Retrieval by Fast Hermite Projection Method. International Conference Graphicon, pp. 308–311, Russia (2005)

  21. Sejdić, E., Can, A., Chaparro, L.F., Steele, C.M., Chau, T.: Compressive sampling of swallowing accelerometry signals using time-frequency dictionaries based on modulated discrete prolate spheroidal sequences. EURASIP J. Adv. Signal Process. 2012, 101 (2012). https://doi.org/10.1186/1687-6180-2012-101

    Article  Google Scholar 

  22. Stanković, L.J., Mandic, D., Daković, M., Kisil, I.: Demystifying the coherence index in compressive sensing. IEEE Signal Process. Mag. 37(1), 152–162 (2020)

  23. Stanković, L.J., Stanković, S., Amin, M.: Missing samples analysis in signals for applications to L-estimation and compressive sensing. Signal Process. 94, 401–408 (2014)

  24. Needell, D., Tropp, J.A.: CoSaMP: iterative signal recovery from incomplete and inaccurate samples. App. Comput. Harmonic Anal. 20(3), 301–321 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  25. Stanković, L.J., Brajović, M., Stanković, I., Lerga, J., Daković, M.: RANSAC-Based Signal Denoising Using Compressive Sensing. Circuits Syst. Signal Process. 40, 3907–3928 (2021)

  26. Candès, E.J.: The restricted isometry property and its implications for compressed sensing. Comptes Rendus Mathematique 346(9), 589–592 (2008)

  27. PhysioNet: MIT-BIH ECG Compression Test Database, http://www.physionet.org/physiobank/database/cdb, last access – May (2017)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miloš Brajović.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brajović, M., Orović, I., Beko, M. et al. Reconstruction of signals with sparse representation in optimally dilated Hermite basis. SIViP 17, 2789–2797 (2023). https://doi.org/10.1007/s11760-023-02496-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-023-02496-0

Keywords

Navigation