Skip to main content
Log in

Deep active contours using locally controlled distance vector flow

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

Active contours model (ACM) has been extensively used in computer vision and image processing. In recent studies, convolutional neural networks (CNNs) have been combined with ACM replacing the user in the process of contour evolution and image segmentation to eliminate limitations associated with ACM dependence on energy functional parameters and initialization. However, prior studies did not aim for automatic initialization, which is addressed in this article. In addition to manual initialization, current methods are highly sensitive to the initial location and fail to delineate borders accurately. We propose a fully automatic image segmentation method to address problems of manual initialization, insufficient capture range, and poor convergence to boundaries, in addition to the problem of assignment of energy functional parameters. We train two CNNs, one of which generating ACM weighting parameters and the other generating a ground truth mask to extract distance transform (DT) and an initialization circle. DT is used to form a vector field pointing from each pixel of the image towards the closest ground truth boundary point. Vector magnitudes are equal to the Euclidean distance between each pixel and the closest ground truth boundary point. We evaluate our method on four publicly available datasets, including two building instance segmentation datasets, i.e., Vaihingen and Bing huts, and two mammography image datasets, INBreast and DDSM-BCRP. Our approach achieves state-of-the-art results in mean Intersection over Union (mIoU), Dice similarity coefficient and Boundary F-score (BoundF) with the values of 92.33%, 92.44%, and 86.57% for Vaihingen dataset, and 87.12%, 86.86%, and 66.91% for Bing huts dataset. We obtained the Dice similarity coefficient values of 94.23% and 90.89% for the INBreast and DDSM-BCRP, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Kass, M., Witkin, A., Terzopoulos, D.: Snakes: active contour models. Int. J. Comput. Vis. 1(4), 321–331 (1988). https://doi.org/10.1007/BF00133570

    Article  MATH  Google Scholar 

  2. Cohen, L.D., Cohen, I.: Finite-element methods for active contour models and balloons for 2-D and 3-D images. IEEE Trans. Pattern Anal. Mach. Intell. 15(11), 1131–1147 (1993). https://doi.org/10.1109/34.244675

    Article  Google Scholar 

  3. Xu, C., Prince, J.L.: Snakes, shapes, and gradient vector flow. IEEE Trans. Image Process. 7(3), 359–369 (1998). https://doi.org/10.1109/83.661186

    Article  MathSciNet  MATH  Google Scholar 

  4. Sum, K.W., Cheung, P.Y.S.: Boundary vector field for parametric active contours. Pattern Recognit. 40(6), 1635–1645 (2007). https://doi.org/10.1016/j.patcog.2006.11.006

    Article  MATH  Google Scholar 

  5. Xie, X., Mirmehdi, M.: MAC: magnetostatic active contour model. IEEE Trans. Pattern Anal. Mach. Intell. 30(4), 632–646 (2008). https://doi.org/10.1109/TPAMI.2007.70737

    Article  Google Scholar 

  6. Wang, T., Cheng, I., Basu, A.: Fluid vector flow and applications in brain tumor segmentation. IEEE Trans. Biomed. Eng. 56(3), 781–789 (2009). https://doi.org/10.1109/TBME.2009.2012423

    Article  Google Scholar 

  7. Cohen, L.D.: On active contour models and balloons. CVGIP Image Underst. 53(2), 211–218 (1991). https://doi.org/10.1016/1049-9660(91)90028-N

    Article  MATH  Google Scholar 

  8. Rupprecht, C., Huaroc Moquillaza, E., Baust, M., Navab, N.: Deep active contours (2016). arXiv preprint arXiv:160705074

  9. Marcos, D., Tuia, D., Kellenberger, B., Zhang, L., Bai, M., Liao, R., Urtasun, R.: Learning deep structured active contours end-to-end. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 8877–8885 (2018). https://doi.org/10.1109/CVPR.2018.00925

  10. Cheng, D., Liao, R., Fidler, S., Urtasun, R.: Darnet: deep active ray network for building segmentation. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 7431–7439 (2019). https://doi.org/10.1109/CVPR.2019.00761

  11. Gur, S., Shaharabany, T., Wolf, L.: End to end trainable active contours via differentiable rendering (2019). arXiv preprint arXiv:191200367

  12. Hoogi, A., Subramaniam, A., Veerapaneni, R., Rubin, D.L.: Adaptive estimation of active contour parameters using convolutional neural networks and texture analysis. IEEE Trans. Med. Imaging 36(3), 781–791 (2017). https://doi.org/10.1109/TMI.2016.2628084

    Article  Google Scholar 

  13. Le, T.H.N., Quach, K.G., Luu, K., Duong, C.N., Savvides, M.: Reformulating level sets as deep recurrent neural network approach to semantic segmentation. IEEE Trans. Image Process. 27(5), 2393–2407 (2018). https://doi.org/10.1109/TIP.2018.2794205

    Article  MathSciNet  Google Scholar 

  14. Albalooshi, F.A., Sidike, P., Sagan, V., Albalooshi, Y., Asari, V.K.: Deep belief active contours (DBAC) with its application to oil spill segmentation from remotely sensed sea surface imagery. Photogram. Eng. Remote Sens. 84(7), 451–458 (2018). https://doi.org/10.14358/PERS.84.7.451

    Article  Google Scholar 

  15. Hatamizadeh, A., Sengupta, D., Terzopoulos, D.: End-to-end deep convolutional active contours for image segmentation (2019). arXiv preprint arXiv:190913359

  16. Wang, Z., Acuna, D., Ling, H., Kar, A., Fidler, S.: Object instance annotation with deep extreme level set evolution. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 7500–7508 (2019). https://doi.org/10.1109/CVPR.2019.00768

  17. Hatamizadeh, A., Sengupta, D., Terzopoulos, D.: End-to-end trainable deep active contour models for automated image segmentation: delineating buildings in aerial imagery. In: European Conference on Computer Vision, vol. 12357, pp. 730–746. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58610-2_43

  18. 2d semantic labeling contest. In: International Society for Photogrammetry and Remote Sensing. http://www2.isprs.org/commissions/comm3/wg4/semantic-labeling.html

  19. Moreira, I.C., Amaral, I., Domingues, I., Cardoso, A., Cardoso, M.J., Cardoso, J.S.: Inbreast: toward a full-field digital mammographic database. Acad. Radiol. 19(2), 236–248 (2012). https://doi.org/10.1016/j.acra.2011.09.014

    Article  Google Scholar 

  20. Heath, M., Bowyer, K., Kopans, D., Kegelmeyer, P., Moore, R., Chang, K., Munishkumaran, S.: Current status of the digital database for screening mammography. In: Karssemeijer, N., Thijssen, M., Hendriks, J., van Erning, L. (eds.) Digital Mammography, vol. 13, pp. 457–460. Springer, Dordrecht (1998). https://doi.org/10.1007/978-94-011-5318-8_75

    Chapter  Google Scholar 

  21. Ball, J.E., Bruce, L.M.: Digital mammographic computer aided diagnosis (cad) using adaptive level set segmentation. In: 2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 4973–4978 (2007). https://doi.org/10.1109/IEMBS.2007.4353457

  22. Zhu, W., Xiang, X., Tran, T.D., Hager, G.D., Xie, X.: Adversarial deep structured nets for mass segmentation from mammograms. In: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), pp. 847–850 (2018). https://doi.org/10.1109/ISBI.2018.8363704

  23. Li, H., Chen, D., Nailon, W.H., Davies, M.E., Laurenson, D.: Improved breast mass segmentation in mammograms with conditional residual u-net. In: Stoyanov, D., Taylor, Z., Kainz, B., Maicas, G., Beichel, R.R., Martel, A., Maier-Hein, L., Bhatia, K., Vercauteren, T., Oktay, O., Carneiro, G., Bradley, A.P., Nascimento, J., Min, H., Brown, M.S., Jacobs, C., Lassen-Schmidt, B., Mori, K., Petersen, J., Estépar, R.S.J., Schmidt-Richberg, A., Veiga, C. (eds.) Image Analysis for Moving Organ, Breast, and Thoracic Images, vol. 11040, pp. 81–89. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00946-5

    Chapter  Google Scholar 

  24. Singh, V.K., Rashwan, H.A., Romani, S., Akram, F., Pandey, N., Sarker, M.K., Saleh, A., Arenas, M., Arquez, M., Puig, D., Torrents-barrena, J.: Breast tumor segmentation and shape classification in mammograms using generative adversarial and convolutional neural network. Expert Syst. Appl. 139, 1–14 (2020). https://doi.org/10.1016/j.eswa.2019.112855

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamed Azarnoush.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

This articles does not contain data from participants.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akbarimoghaddam, P., Ziaei, A. & Azarnoush, H. Deep active contours using locally controlled distance vector flow. SIViP 16, 1773–1781 (2022). https://doi.org/10.1007/s11760-022-02134-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-022-02134-1

Keywords

Navigation