Skip to main content
Log in

Simplifying a shape manifold as linear manifold for shape analysis

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

In this paper, a bijection, which projects the shape manifold as a linear manifold, is proposed to simplify the nonlinear problems of shape analysis. Shapes are represented by the direction function of discrete curves. These shapes are elements of a finite-dimensional shape manifold. We discuss the shape manifold from three perspectives: extrinsic, intrinsic and global using the reference coordinate system. Then, we construct another manifold, in which the reference frame is the Fourier basis and the associated related coordinate is the Fourier coefficients obtained by Fourier transformation. This transformation ensures a bijection between the local spaces of two manifolds. In the constructed manifold, the nonlinear structure is described by the reference frames. Consequently, we obtain a linear manifold only using the related coordinate. The performance of our method is illustrated by the applications of shape interpolation, transportation of shape deformation and shape retrieval.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Arica, N., Vural, F.T.Y.: Bas: a perceptual shape descriptor based on the beam angle statistics. Pattern Recogn. Lett. 24(9), 1627–1639 (2008)

    MATH  Google Scholar 

  2. Bauer, M., Bruveris, M., Charon, N., Moller-Andersen, J.: A relaxed approach for curve matching with elastic metrics. ESAIM Control Optim. Calc. Var. 25, 72 (2019)

    Article  MathSciNet  Google Scholar 

  3. Bauer, M., Bruveris, M., Harms, P., Moller-Andersen, J.: A numerical framework for sobolev metrics on the space of curves. SIAM J. Imaging Sci. 10(1), 47–73 (2017)

    Article  MathSciNet  Google Scholar 

  4. Belongie, S., Malik, J., Puzicha, J.: Shape matching and object recognition using shape contexts. IEEE Trans. Pattern Anal. Mach. Intell. 24(4), 509–522 (2002)

    Article  Google Scholar 

  5. Bruveris, M.: Optimal reparametrizations in the square root velocity framework. SIAM J. Math. Anal. 48(6), 4335–4354 (2016)

    Article  MathSciNet  Google Scholar 

  6. Chen, P., Li, X., Wu, L.: Shape interpolating on closed curves space with stretching channels. In: Chinese automation congress (CAC), pp. 7795–7800 (2017)

  7. Chern, S.S., Chen, W.H., Lam, K.S.: Lectures on Differential Geometry, vol. 1. World Scientific, Singapore (2000)

    MATH  Google Scholar 

  8. Cho, M.H., Asiaee, A., Kurtek, S.: Elastic statistical shape analysis of biological structures with case studies: a tutorial. Bull. Math. Biol. 81(7), 2052–2073 (2019)

    Article  MathSciNet  Google Scholar 

  9. Delavari, M., Foruzan, A.H.: Anatomical decomposition of human liver volume to build accurate statistical shape models. SIViP 12(2), 331–338 (2018)

    Article  Google Scholar 

  10. Demisse, G.G., Aouada, D., Ottersten, B.: Similarity metric for curved shapes in euclidean space. In: Proceedings of IEEE Conference Computer Vision and Pattern Recognition, pp. 5042–5050 (2016)

  11. Demisse, G.G., Aouada, D., Ottersten, B.: Deformation based curved shape representation. IEEE Trans. Pattern Anal. Mach. Intell. 40(6), 1338–1351 (2018)

    Article  Google Scholar 

  12. Govindaraj, P., Sudhakar, M.S.: A new 2d shape retrieval scheme based on phase congruency and histogram of oriented gradients. SIViP 13(4), 771–778 (2019)

    Article  Google Scholar 

  13. Hu, R., Jia, W., Ling, H., Huang, D.: Multiscale distance matrix for fast plant leaf recognition. IEEE Trans. Image Process. 21(11), 4667–4672 (2012)

    Article  MathSciNet  Google Scholar 

  14. Islam, S., Qasim, T., Yasir, M., Bhatti, N., Mahmood, H., Zia, M.: Single- and two-person action recognition based on silhouette shape and optical point descriptors. SIViP 12(5), 853–860 (2018)

    Article  Google Scholar 

  15. Kendall, D.G.: Shape manifolds, procrustean metrics, and complex projective spaces. Bull. Lond. Math. Soc. 16(2), 81–121 (1984)

    Article  MathSciNet  Google Scholar 

  16. Khan, M.H., Farid, M.S., Grzegorzek, M.: Spatiotemporal features of human motion for gait recognition. SIViP 13(2), 369–377 (2019)

    Article  Google Scholar 

  17. Klassen, E., Srivastava, A., Mio, M., Joshi, S.: Analysis of planar shapes using geodesic paths on shape spaces. IEEE Trans. Pattern Anal. Mach. Intell. 26(3), 372–383 (2004)

    Article  Google Scholar 

  18. Laga, H., Kurtek, S., Srivastava, A., Miklavcic, S.J.: Landmark-free statistical analysis of the shape of plant leaves. J. Theor. Biol. 363, 41–52 (2014)

    Article  MathSciNet  Google Scholar 

  19. Latecki, L., Lakamper, R., Eckhardt, U.: Shape descriptors for non-rigid shapes with a single closed contour. In: Proceedings of IEEE Conference Computer Vision and Pattern Recognition, pp. 424–429 (2000)

  20. Lee, J.M.: Introduction to Smooth Manifolds. Springer, New York (2012)

    Book  Google Scholar 

  21. Ling, H., Jacobs, D.W.: Shape classification using the inner-distance. IEEE Trans. Pattern Anal. Mach. Intell. 29(2), 286–299 (2007)

    Article  Google Scholar 

  22. Mio, W., Srivastava, A., Joshi, S.: On shape of plane elastic curves. Int. J. Comput. Vis. 73(3), 307–324 (2007)

    Article  Google Scholar 

  23. Mouine, S., Yahiaoui, I., Verroust-Blondet, A.: Advanced shape context for plant species identification using leaf image retrieval. In: ACM International Conference on Multimedia Retrieval , vol. 49, pp. 1–8 (2012)

  24. Naffouti, S.E., Fougerolle, Y., Aouissaoui, I., Sakly, A., Mériaudeau, F.: Heuristic optimization-based wave kernel descriptor for deformable 3d shape matching and retrieval. SIViP 12(5), 915–923 (2018)

    Article  Google Scholar 

  25. Srivastava, A., Klassen, E., Joshi, S.H., Jermyn, I.H.: Shape analysis of elastic curves in euclidean spaces. IEEE Trans. Pattern Anal. Mach. Intell. 33(7), 1415–1428 (2011)

    Article  Google Scholar 

  26. Strait, J., Kurtek, S., Bartha, E., MacEachern, S.: Landmark-constrained elastic shape analysis of planar curves. J. Am. Stat. Assoc. 112(518), 521–533 (2017)

    Article  MathSciNet  Google Scholar 

  27. Wu, S.G., Bao, F.S., Xu, E.Y., Wang, Y.X., Chang, Y.F., Xiang, Q.L.: A leaf recognition algorithm for plant classification using probabilistic neural network. In: IEEE International Symposium on Signal Processing and Information Technology, pp. 11–16 (2007)

Download references

Acknowledgements

This work was supported in part by the National Key R&D Program of China (2019YFB1312001), the National Natural Science Foundation of China (61471229, 62022030, 62033005 and 61673130), the state grid Heilongjiang electric power company limited funded project (No. 522417190057) and the Self-Planned Task of State Key Laboratory of Advanced Welding and Joining (HIT), the Natural Science Foundation of Guangdong Province of China (2019A1515011950) and Heilongjiang Provincial Natural Science Foundation of China (F2018012 and QC2017072).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ligang Wu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, P., Li, X., Liu, J. et al. Simplifying a shape manifold as linear manifold for shape analysis. SIViP 15, 1003–1010 (2021). https://doi.org/10.1007/s11760-020-01825-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-020-01825-x

Keywords

Navigation