Sparse and collaborative representation-based anomaly detection

Abstract

A sparse and collaborative representation-based detector (SCRD) is proposed in this work. It uses the benefits of both sparse and collaborative representation for anomalous target detection. Anomalies compose the minority of image scene. So, sparse representation that involves a low number of dictionary’s atoms is an appropriate approach for estimating of targets. In contrast, the background pixels compose the majority of image scene. So, collaborative representation, which utilizes all atoms of dictionary, is a desired representation to model the background data. The used dictionary in sparse representation is constituted from the anomalous pixels, while the used dictionary in collaborative representation is constituted from the background ones. The proposed SCRD method has high probability of detection and low computations in comparison with several state-of-the-art anomaly detectors. The superior performance of SCRD is shown on both synthetic and real hyperspectral images.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    Landgrebe, D.: Hyperspectral image data analysis. IEEE Signal Process. Mag. 19(1), 17–28 (2002)

    Article  Google Scholar 

  2. 2.

    Wu, Y., Wang, P., Wang, S., Liu, J., Gao, M., Wei, R., Gao, X.: Hyperspectral imaging and analysis for sketch painting. Optik 212, 164686 (2020)

    Article  Google Scholar 

  3. 3.

    Roy, S.K., Krishna, G., Dubey, S.R., Chaudhuri, B.B.: HybridSN: exploring 3-D to 2-D CNN feature hierarchy for hyperspectral image classification. IEEE Geosci. Remote Sens. Lett. 17(2), 277–281 (2020)

    Article  Google Scholar 

  4. 4.

    Bakhshi, G., Shahtalebi, K., Momeni, M.: A new adaptive algorithm for target detection in hyperspectral images. Infrared Phys. Technol. 99, 222–230 (2019)

    Article  Google Scholar 

  5. 5.

    Cherouat, S., Soltani, F., Schmitt, F., et al.: Using fractal dimension to target detection in bistatic SAR data. Signal Image Video Process. 9(2), 365–371 (2015)

    Article  Google Scholar 

  6. 6.

    Zhao, C., Li, C., Yao, X., Li, W.: Real-time kernel collaborative representation-based anomaly detection for hyperspectral imagery. Infrared Phys. Technol. 107, 103325 (2020)

    Article  Google Scholar 

  7. 7.

    Wei, L., Xuchu, Y.: Small target extraction based on independent component analysis for hyperspectral imagery. Geo-spatial Inf. Sci. 9(2), 103–107 (2006)

    Article  Google Scholar 

  8. 8.

    Imani, M., Ghassemian, H.: Local histogram and discriminative learning-based hyperspectral data classification. Remote Sens. Lett. 8(1), 86–95 (2017)

    Article  Google Scholar 

  9. 9.

    Song, S., Liu, Z., Huang, M., Zhu, Q., Qin, J., Kim, M.S.: Detection of fish bones in fillets by Raman hyperspectral imaging technology. J. Food Eng. 272, 109808 (2020)

    Article  Google Scholar 

  10. 10.

    Tu, B., Yang, X., Li, N., Zhou, C., He, D.: Hyperspectral anomaly detection via density peak clustering. Pattern Recognit. Lett. 129, 144–149 (2020)

    Article  Google Scholar 

  11. 11.

    Zhao, C., Zhang, L.: Spectral-spatial stacked autoencoders based on low-rank and sparse matrix decomposition for hyperspectral anomaly detection. Infrared Phys. Technol. 92, 166–176 (2018)

    Article  Google Scholar 

  12. 12.

    Zhao, R., Du, B., Zhang, L., Zhang, L.: A robust background regression based score estimation algorithm for hyperspectral anomaly detection. ISPRS J. Photogramm. Remote Sens. 122, 126–144 (2016)

    Article  Google Scholar 

  13. 13.

    Mohammadi, M.M., Moqiseh, A., Nayebi, M.M.: Surveillance radar target detection with the Fourier-Hough transform. In: 2008 International Radar Symposium, Wroclaw, pp. 1–4 (2008)

  14. 14.

    Ren, H., Chang, C.-I.: Automatic spectral target recognition in hyperspectral imagery. IEEE Trans. Aerosp. Electron. Syst. 39(4), 1232–1249 (2003)

    Article  Google Scholar 

  15. 15.

    Xiong, Y., Zuo, R., Wang, K., Wang, J.: Identification of geochemical anomalies via local RX anomaly detector. J. Geochem. Explor. 189, 64–71 (2018)

    Article  Google Scholar 

  16. 16.

    Nasrabadi, N.M.: Regularization for spectral matched filter and RX anomaly detector. In: Proceedings of SPIE, vol. 6966, art. no. 696604 (2008)

  17. 17.

    Chang, S., Du, B., Zhang, L.: BASO: a background-anomaly component projection and separation optimized filter for anomaly detection in hyperspectral images. IEEE Trans. Geosci. Remote Sens. 56(7), 3747–3761 (2018)

    Article  Google Scholar 

  18. 18.

    Schaum, A.P.: Hyperspectral anomaly detection beyond RX. In: Proceedings of SPIE, vol. 6565, art. no. 656502 (2007)

  19. 19.

    Zhou, J., Kwan, C., Ayhan, B., Eismann, M.T.: A novel cluster kernel RX algorithm for anomaly and change detection using hyperspectral images. IEEE Trans. Geosci. Remote Sens. 54(11), 6497–6504 (2016)

    Article  Google Scholar 

  20. 20.

    Guo, Q., Zhang, B., Ran, Q., Gao, L., Li, J., Plaza, A.: Weighted- RXD and linear filter-based RXD: improving background statistics estimation for anomaly detection in hyperspectral imagery. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 7(6), 2351–2366 (2014)

    Article  Google Scholar 

  21. 21.

    Li, W., Du, Q.: Collaborative representation for hyperspectral anomaly detection. IEEE Trans. Geosci. Remote Sens. 53(3), 1463–1474 (2015)

    Article  Google Scholar 

  22. 22.

    Li, J., Zhang, H., Zhang, L., Ma, L.: Hyperspectral anomaly detection by the use of background joint sparse representation. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 8(6), 2523–2533 (2015)

    Article  Google Scholar 

  23. 23.

    Su, H., Wu, Z., Du, Q., Du, P.: Hyperspectral anomaly detection using collaborative representation with outlier removal. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 11(12), 5029–5038 (2018)

    Article  Google Scholar 

  24. 24.

    Imani, M.: Anomaly detection using morphology-based collaborative representation in hyperspectral imagery. Eur. J. Remote Sens. 51(1), 457–471 (2018)

    MathSciNet  Article  Google Scholar 

  25. 25.

    Ülkü, İ., Töreyin, B.U.: Sparse coding of hyperspectral imagery using online learning. Signal Image Video Process. 9, 959–966 (2015)

    Article  Google Scholar 

  26. 26.

    Huyan, N., Zhang, X., Zhou, H., Jiao, L.: Hyperspectral anomaly detection via background and potential anomaly dictionaries construction. IEEE Trans. Geosci. Remote Sens. 57(4), 2263–2276 (2019)

    Article  Google Scholar 

  27. 27.

    Revathi, A.R., Kumar, D.: An efficient system for anomaly detection using deep learning classifier. Signal Image Video Process. 11, 291–299 (2017)

    Article  Google Scholar 

  28. 28.

    Li, S., Liu, C., Yang, Y.: Anomaly detection based on sparse coding with two kinds of dictionaries. Signal Image Video Process. 12, 983–989 (2018)

    Article  Google Scholar 

  29. 29.

    Schweizer, S.M., Moura, J.M.F.: Efficient detection in hyperspectral imagery. IEEE Trans. Image Process. 10(4), 584–597 (2001)

    Article  Google Scholar 

  30. 30.

    Xu, Y., Wu, Z., Li, J., Plaza, A., Wei, Z.: Anomaly detection in hyperspectral images based on low-rank and sparse representation. IEEE Trans. Geosci. Remote Sens. 54(4), 1990–2000 (2016)

    Article  Google Scholar 

  31. 31.

    Wang, Z., Martin, R.: Model-free posterior inference on the area under the receiver operating characteristic curve. J. Stat. Plan. Inference (2020). https://doi.org/10.1016/j.jspi.2020.03.008

    MathSciNet  Article  MATH  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Maryam Imani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Imani, M. Sparse and collaborative representation-based anomaly detection. SIViP 14, 1573–1581 (2020). https://doi.org/10.1007/s11760-020-01709-0

Download citation

Keywords

  • Sparse representation
  • Collaborative representation
  • Dictionary
  • Hyperspectral image
  • Anomaly detection