Skip to main content

Advertisement

Log in

Diffuse reflectance spectroscopy in dental caries detection and classification

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

Machine learning and augmented reality form very important computational tools in biomedicine, neurology and stomatology as well. The present paper is devoted to a novel method of spectroscopic detection of caries lesions that changes the optical properties of the affected tissue. This method of the diffuse reflectance spectroscopy is used in many biomedical areas even though the analysis of associated data suffers from a large variance of acquired signals’ shape and their properties. The proposed methodology of measured spectra analysis is based upon general methods of signal feature evaluation and the use of computational intelligence for their classification. The paper compares properties of dental feature clusters for the set of 578 tissues with different levels of their changes. Classification results of selected features by the support vector machine, Bayesian method, k-nearest neighbour method and neural network enable to distinguish the healthy tissue and caries lesions with the accuracy from 94.1 to 98.4% and the cross-validation error lower than 8.3%. These results suggest how the augmented reality and general mathematical signal processing methods can be beneficial for diagnostic purposes in dental research and possibly in the clinical practice as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Bachmann, L., Zezell, D., Ribeiro, A., Laércio, G., Ito, A.: Fluorescence spectroscopy of biological tissues—a review. Appl. Spectrosc. Rev. 41, 575–590 (2006)

    Google Scholar 

  2. Buchwald, T., Buchwald, Z.: Assessment of the Raman spectroscopy effectiveness in determining the early changes in human enamel caused by artificial caries. Analyst 144, 1409–1419 (2019)

    Google Scholar 

  3. Dong, J., Han, Z., Zhao, Y., Wang, W., Procházka, A., Chambers, J.: Sparse analysis model based multiplicative noise removal with enhanced regularizations. Sig. Process. 137, 160–176 (2017)

    Google Scholar 

  4. Erden, F., Velipasalar, S., Alkar, A.Z., Cetin, A.E.: Sensors in assisted living: a survey of signal and image processing methods. IEEE Signal Process. Mag. 33(2), 36–44 (2016)

    Google Scholar 

  5. Fushiki, T.: Estimation of prediction error by using K-fold cross-validation. Stat. Comput. 21(2), 137–146 (2011)

    MathSciNet  MATH  Google Scholar 

  6. Gardner, C.: Transmission versus reflectance spectroscopy for quantitation. J. Biomed. Opt. 23(1), 018001 (2018)

    Google Scholar 

  7. Gráfová, L., Kašparová, M., Kakawand, S., Procházka, A., Dostálová, T.: Study of edge detection task in dental panoramic X-ray images. Dentomaxillofac. Radiol. 42, 20120391:1–20120391:12 (2013)

    Google Scholar 

  8. Graye, M., Markowitz, K., Strickland, M., Guzy, G., Burke, M., Houpt, M.: In vitro evaluation of the Spectra early caries detection system. J. Biomed. Opt. 23(1), 1–6 (2012)

    Google Scholar 

  9. Gugnani, N., Pandit, I., Srivastava, N., Gupta, M., Sharma, M.: International caries detection and assessment system (ICDAS): a new concept. Int. J. Clin. Pediatr. Dentistry 4(2), 93–100 (2011)

    Google Scholar 

  10. Hanley, J., McNeil, B.: The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 143, 29–36 (1982)

    Google Scholar 

  11. Hendriks, B., Balthasar, A., Lucassen, G., van der Voort, M., Mueller, M., Pully, V., Bydlon, T., Reich, C., van Keersop, A., Kortsmit, J., Langhout, G., van Geffen, G.: Nerve detection with optical spectroscopy for regional anaesthesia procedures. J. Transl. Med. 13, 380:1–380:11 (2015)

    Google Scholar 

  12. Hoštálková, E., Vyšata, O., Procházka, A.: Multidimensional image de-noising using Haar transform. In: Proceedings of the 15th International Conference on Digital Signal Processing, pp. 175–179 (2007)

  13. Hsiao, Y., Tien, G., Chuang, M., Hsu, F., Hsieh, H., Sung, K.: Development of a movable diffuse reflectance spectroscopy system for clinical study of esophageal precancer. In: Clinical and Biomedical Spectroscopy and Imaging IV, p. 1 (2015)

  14. Kašparová, M., Halamová, S., Dostálová, T., Procházka, A.: Intra-oral 3D scanning for the digital evaluation of dental arch parameters. MDPI Appl. Sci. 8, 1838:1–1838:9 (2018)

    Google Scholar 

  15. Kašparová, M., Procházka, A., Gráfová, L., Yadollahi, M., Vyšata, O., Dostálová, T.: Evaluation of dental morphometrics during the orthodontic treatment. Biomed. Eng. Online 14, 68:1–68:13 (2014)

    Google Scholar 

  16. Lamont, R., Egland, P.: Chapter 52: Dental caries. In: Tang, Y.W., Sussman, M., Liu, D., Poxton, I., Schwartzman, J. (eds.) Molecular Medical Microbiology, 2nd edn, pp. 945–955. Academic Press, Cambridge (2015)

    Google Scholar 

  17. Markowitz, K., Stenvall, R., Graye, M.: The effect of distance and tooth structure on laser fluorescence caries detection. J. Biomed. Opt. 37(2), 150–160 (2012)

    Google Scholar 

  18. Meglinski, I. (ed.): Biophotonics for Medical Applications. Elsevier Ltd., Amsterdam (2015)

    Google Scholar 

  19. Mjor, I., Pindborg, J.: Histology of the Human Tooth. Scandinavian University Books (1973)

  20. Pernkopf, F.: Detection of surface defects on raw steel blocks using Bayesian network classifiers. Pattern Anal. Appl. 7, 333–342 (2004)

    MathSciNet  Google Scholar 

  21. Pitts, N., Ekstrand, K.: International Caries Detection and Assessment System (ICDAS) and its International Caries Classification and Management System (ICCMS)—methods for staging of the caries process and enabling dentists to manage caries. Community Dent. Oral Epidemiol. 41, e41–e52 (2013)

    Google Scholar 

  22. Pitts, N., Zero, D., Marsh, P., Ekstrand, K., Weintraub, J., Ramos-Gomez, F., Tagami, J., Twetman, S., Tsakos, G., Ismail, A.: International Caries Detection and Assessment System (ICDAS): a new concept. Nat. Rev. Dis. Primers 3, 17030:1–17030:16 (2017)

    Google Scholar 

  23. Procházka, A., Dostálová, T., Kašparová, M., Vyšata, O., Charvátová, H., Sanei, S., Marík, V.: Augmented reality implementations in stomatology. MDPI Appl. Sci. 9, 2929:1–2929:13 (2019)

    Google Scholar 

  24. Procházka, A., Vyšata, O., Ťupa, O., Mareš, J., Vališ, M.: Discrimination of axonal neuropathy using sensitivity and specificity statistical measures. Neural Comput. Appl. 25(6), 1349–1358 (2014)

    Google Scholar 

  25. Ruohonen, M., Palo, K., Alander, J.: Spectroscopic detection of caries lesions. Hindawi J. Med. Eng. 13, 161090:1–161090:9 (2013)

    Google Scholar 

  26. Sadeghi, J., de Angelis, M., Patelli, E.: Efficient training of interval Neural Networks for imprecise training data. Neural Netw. 118, 338–351 (2019)

    Google Scholar 

  27. Salsone, S., Taylor, A., Gomez, J., Pretty, I., Ellwood, R., Dickinson, M., Lombardo, G., Zakian, C.: Histological validation of near-infrared reflectance multispectral imaging technique for caries detection and quantification. J. Biomed. Opt. 17(7), 076009 (2013)

  28. Schwarz, R., Gao, W., Daye, D., Williams, M., Richards-Kortum, R., Gillenwater, A.: Autofluorescence and diffuse reflectance spectroscopy of oral epithelial tissue using a depth-sensitive fiber-optic probe. Appl. Opt. 47(6), 825–834 (2008)

    Google Scholar 

  29. Spliethoff, J.: Spectral tissue sensing for guidance and monitoring in oncological procedures. Ph.D. Thesis, Universiteit Twente (2015)

  30. Spliethoff, J., Prevoo, W., Meier, M., De Jong, J., Klomp, H., Evers, D., Sterenborg, H., Lucassen, G., Hendriks, B., Ruers, T.: Real-time in vivo tissue characterization with diffuse reflectance spectroscopy during transthoracic lung biopsy: a clinical feasibility study. Clin. Cancer Res. 22(2), 357–365 (2016)

    Google Scholar 

  31. Tetschke, F., Kirsten, F., Golde, J., Walther, J., Galli, R., Koch, E., Hannig, A.: Application of optical and spectroscopic technologies for the characterization of carious lesions in vitro. Biomed. Tech. 65(3), 519–527 (2018)

    Google Scholar 

  32. Tong, W., Hong, H., Fang, H., Xie, Q., Perkins, R.: Decision forest: combining the predictions of multiple independent decision tree models. J. Chem. Inf. Comput. Sci. 43, 525–531 (2003)

    Google Scholar 

  33. Unnikrishnan, N., Jaysree, V., Jose, A.: Optical method for the detection of dental caries in oral cavity. Int. J. Sci. Res. Publ. 4(9), 1–4 (2014)

    Google Scholar 

  34. Wan, Q., Wang, T., Zhang, K.: Biomedical optical spectroscopy for the early diagnosis of gastrointestinal neoplasms. Tumor Biol. 2017, 1–12 (2017)

    Google Scholar 

  35. Yu, B., Shah, A., Nagarajan, W., Ferris, D.: Diffuse reflectance spectroscopy of epithelial tissue with a smart fiber-optic probe. Biomed. Opt. Express 5(3), 675–689 (2014)

    Google Scholar 

  36. Zakian, C., Pretty, I., Ellwood, R.: Near-infrared hyperspectral imaging of teeth for dental caries detection. J. Biomed. Opt. 14(6), 064047 (2009)

    Google Scholar 

  37. Zhang, P.: Neural networks for classification: a survey. IEEE Trans. Syst. Man Cybern. 30(4), 451–462 (2000)

    Google Scholar 

  38. Zhang, S., Li, X., Zong, M., Zhu, X., Wang, R.: Efficient kNN classification with different numbers of nearest neighbors. IEEE Trans. Neural Netw. Learn. Syst. 29(5), 1774–1785 (2018)

    MathSciNet  Google Scholar 

  39. Zweig, M.H., Campbell, G.: Receiver-operating characteristic (ROC) plots: a fundamental evaluation tool in clinical medicine. Clin. Chem. 39, 561–77 (1993)

    Google Scholar 

Download references

Acknowledgements

This research was supported by grant projects of the Ministry of Health CR (FN HK 00179906) and the Charles University at Prague, Czech Republic (PROGRES Q40), as well as by the project PERSONMED – Centre for the Development of Personalized Medicine in Age-Related Diseases, Reg. No. CZ.02.1.010.00.017 0480007441, co-financed by the European Regional Development Fund (ERDF) and the governmental budget of the Czech Republic. All procedures were approved by the local ethics committee as stipulated by the Helsinki Declaration.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleš Procházka.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Charvát, J., Procházka, A., Fričl, M. et al. Diffuse reflectance spectroscopy in dental caries detection and classification. SIViP 14, 1063–1070 (2020). https://doi.org/10.1007/s11760-020-01640-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-020-01640-4

Keywords

Navigation