Skip to main content
Log in

Bayesian sparse regularization for parallel MRI reconstruction using complex Bernoulli–Laplace mixture priors

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

Parallel imaging technique using several receiver coils provides a fast acquisition of magnetic resonance imaging (MRI) images with high temporal and/or spatial resolutions. Against this background, the most difficult task is the full field of view images reconstruction without noise, distortions and artifacts. In this context, SENSitivity Encoding is considered the most often used parallel MRI (pMRI) reconstruction method in the clinical application. On the one side, solving the inherent reconstruction problems has known significant progress during the last decade. On the other side, the sparse Bayesian regularization for signal/image recovery has generated a great research interest especially when large volumes of data are processed. The purpose of this paper is to develop a novel Bayesian regularization technique for sparse pMRI reconstruction. The new technique is based on a hierarchical Bayesian model using a complex Bernoulli–Laplace mixture in order to promote two sparsity levels for the target image. The inference is conducted using a Markov chain Monte Carlo sampling scheme. Simulation results obtained with both synthetic and real datasets are showing the outperformance of the proposed sparse Bayesian technique compared to other existing regularization techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Pruessmann, K., Weiger, M., Scheidegger, M., Boesiger, P.: SENSE: sensitivity encoding for fast MRI. Magn. Reson. Med. 42, 952 (1999)

    Article  Google Scholar 

  2. Candes, E.J., Romberg, J., Tao, T.: Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theory 52(2), 489 (2006)

    Article  MathSciNet  Google Scholar 

  3. Griswold, M., Jakob, P., Heidemann, R., Nittka, M., Jellus, V., Wang, J., Kiefer, B., Haase, A.: Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magn. Reson. Med. 47, 1202 (2002)

    Article  Google Scholar 

  4. Kyriakos, W., Panych, L., Kacher, D., Westin, C., Bao, C., Mulkern, R., Jolesz, F.: Sensitivity profiles from an array of coils for encoding and reconstruction in parallel (SPACE RIP). Magn. Reson. Med. 44, 301 (2000)

    Article  Google Scholar 

  5. Blaimer, M., Breuer, F., Mueller, M., Heidemann, R., Griswold, M., Jakob, P.: SMASH, SENSE, PILS, GRAPPA: how to choose the optimal method. Top. Magn. Reson. Imaging (TMRI) 15, 223 (2004)

    Article  Google Scholar 

  6. Lustig, M., Donoho, D., Pauly, J.: Sparse MRI: the application of compressed sensing for rapid MR imaging. Magn. Reson. Med. 58(6), 1182 (2007)

    Article  Google Scholar 

  7. Kulkarni, P.H., Merchant, S.N., Awate, S.P.: Bayesian reconstruction of R-fMRI from K-T undersampled data using a robust, subject-invariant, spatially-regularized dictionary prior, pp. 302–306 (2018)

  8. Ravishankar, S., Moore, B.E., Nadakuditi, R.R., Fessler, J.A.: Low-rank and adaptive sparse signal (LASSI) models for highly accelerated dynamic imaging. IEEE Trans. Med. Imaging 36, 1116 (2017)

    Article  Google Scholar 

  9. Caballero, J., Rueckert, D., Hajnal, J.V.: Dictionary learning and time sparsity for dynamic MR data reconstruction. IEEE Trans. Med. Imaging 33, 979 (2014)

    Article  Google Scholar 

  10. Awate, S.P., DiBella, E.V.R.: Compressed sensing HARDI via rotation-invariant concise dictionaries, flexible k-space undersampling, and multiscale spatial regularity, pp. 9–12 (2013)

  11. Awate, S.P., DiBella, E.V.R.: Spatiotemporal dictionary learning for undersampled dynamic MRI reconstruction via joint frame-based and dictionary-based sparsity. In: 9th IEEE International Symposium on Biomedical Imaging (ISBI), pp. 318–321 (2012)

  12. Hadamard, J.: Sur les problèmes aux dérivées partielles et leur signification physique. Princet. Univ. Bull. 13, 49 (1902)

    Google Scholar 

  13. Chaari, L., Pesquet, J.C., Benazza-Benyahia, A., Ciuciu, P.: Autocalibrated regularized parallel MRI reconstruction in the wavelet domain. In: IEEE International Symposium on Biomedical Imaging, pp. 756–759 (2008)

  14. Ying, L., Xu, D., Liang, Z.P.: On Tikhonov Regularization for image reconstruction in parallel MRI. IEEE Eng. Med. Biol. Soc. 2, 1056 (2004)

    Google Scholar 

  15. Liu, B., Ying, L., Steckner, M., Jun, X., Sheng, J.: Regularized SENSE reconstruction using iteratively refined total variation method. In: IEEE International Symposium on Biomedical Imaging (ISBI) pp. 121–124 (2007)

  16. Chaari, L., Ciuciu, P., Mériaux, S., Pesquet, J.C.: Spatio-temporal wavelet regularization for parallel MRI reconstruction: application to functional MRI. Magn. Reson. Mater. Phys. Biol. Med. 27(6), 509 (2014)

    Article  Google Scholar 

  17. Chaari, L., Pesquet, J.C., Benazza-Benyahia, A., Ciuciu, P.: A wavelet-based regularized reconstruction algorithm for SENSE parallel MRI with applications to neuroimaging. Med. Image Anal. 15, 185 (2011)

    Article  Google Scholar 

  18. Chaabene, S., Chaari, L.: Bayesian myopic parallel MRI reconstruction. In: 8th International Symposium on Signal, Image, Video and Communications (ISIVC), vol. 52, p. 103 (2016)

  19. Chaari, L.: Bayesian sparse regularized reconstruction in parallel MRI with sensitivity matrix imprecision. In: International Conference on Advances in Biomedical Engineering (ICABME), pp. 209–212 (2015)

  20. Dobigeon, N., Hero, A.O., Tourneret, J.Y.: Hierarchical Bayesian sparse image reconstruction with application to MRFM. IEEE Trans. Image Process. 18(9), 2059 (2009)

    Article  MathSciNet  Google Scholar 

  21. Chaari, L., Tourneret, J., Batatia, H.: Sparse Bayesian regularization using Bernoulli–Laplacian priors. In: 21st European Signal Processing Conference (EUSIPCO), pp. 1–5 (2013)

  22. Chaari, L., Batatia, H., Tourneret, J.: Sparse Bayesian image restoration with linear operator uncertainties with application to EEG signal recovery. In: Middle East Conference on Biomedical Engineering (MECBME), pp. 139–142 (2014)

  23. Costa, F., Batatia, H., Chaari, L., Tourneret, J.: Sparse EEG source localization using Bernoulli–Laplacian priors. IEEE Trans. Biomed. Eng. 62(12), 2888 (2015)

    Article  Google Scholar 

  24. Costa, F., Batatia, H., Oberlin, T., Tourneret, J.Y.: EEG source localization based on a structured sparsity prior and a partially collapsed Gibbs sampler. In: IEEE 6th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP), pp. 261–264 (2015)

  25. Costa, F., Batatia, H., Oberlin, T., D’Giano, C., Tourneret, J.Y.: Bayesian EEG source localization using a structured sparsity prior. NeuroImage 144, 142 (2017)

    Article  Google Scholar 

  26. Chaari, L., Toumeret, J.Y., Chaux, C.: Sparse signal recovery using a Bernoulli generalized Gaussian prior. In: 23rd European Signal Processing Conference (EUSIPCO) pp. 1711–1715 (2015)

  27. Chaari, L., Batatia, H., Dobigeon, N., Tourneret, J.: A hierarchical sparsity-smoothness Bayesian model for \({\ell }_0+{\ell }_1+{\ell }_2\) regularization. In: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1901–1905 (2014)

  28. Guerquin-Kern, M., Ville, D.V.D., Vonesch, C., Baritaux, J.C., Pruessmann, K.P., Unser, M.: Wavelet regularized reconstruction for rapid MRI. In: IEEE International Symposium on Biomedical Imaging (ISBI), pp. 193–196 (2009)

  29. Robert, C., Castella, G.: Monte Carlo Statistical Methods. Springer, New York (2004)

    Book  Google Scholar 

  30. Chaabene, S., Chaari, L., Kallel, A.: Sparse Bayesian pMRI reconstruction with complex Bernoulli–Laplace mixture priors. In: IEEE 4th Middle East Conference on Biomedical Engineering (MECBME), pp. 193–197 (2018)

  31. Gelman, A., Rubin, D.B.: Inference from iterative simulation using multiple sequences. Stat. Sci. 7(4), 457 (1992)

    Article  Google Scholar 

  32. Tikhonov, A.: Tikhonov Regularization of incorrectly posed problems. Sov. Math. Dokl. 4, 1624 (1963)

    MATH  Google Scholar 

  33. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siwar Chaabene.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaabene, S., Chaari, L. & Kallel, A. Bayesian sparse regularization for parallel MRI reconstruction using complex Bernoulli–Laplace mixture priors. SIViP 14, 445–453 (2020). https://doi.org/10.1007/s11760-019-01567-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-019-01567-5

Keywords

Navigation