Skip to main content
Log in

A generalized modeling of ill-posed inverse reconstruction of images using a novel data-driven framework

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

By definition, an instance of image reconstruction often combines denoising, deblurring and enhancing objectively and appears as a fundamental process in visual processing systems which is mathematically an ill-posed inverse optimization problem. It suffers additional complexities because of a non-stationary nature of the image, restricting available methods to produce inconsistent restoration on a variety of image and degradation types. It requires filling this gap by a generic framework of image restoration. Therefore, in this paper, we modeled a novel data-driven framework of generic image reconstruction as a testing benchmark to the emerging application of deep learning. The proposed framework comprises of data engineering, image filtering and a regression neural network for better restoration of many degraded images. We evaluated the effectiveness of the framework on many images degraded by a Gaussian, out-of-focus, motion or airy-pattern blur and random additive white Gaussian noise. The performance appeared better in comparison to a benchmark and state-of-the-art generic image restoration results on several indicators. Furthermore, the framework performed better in comparison to a recent approach to image reconstruction which uses a deep convolutional neural network.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. Dataset website: http://archive.stsci.edu/cgi-bin/dss_form.

References

  1. Marcus, G.: Deep Learning: A Critical Appraisal (Jan 2018). arXiv:1801.00631v1 [cs.AI]

  2. Flamary, R.: Astronomical image reconstruction with convolutional neural networks. In: 25th European Signal Processing Conference (EUSIPCO), Kos, pp. 2468-2472. (2017). https://doi.org/10.23919/EUSIPCO.2017.8081654

  3. Jin, K.H., McCann, M.T., Froustey, E., Unser, M.: Deep convolutional neural network for inverse problems in imaging. IEEE Trans. Image Process. 26(9), 4509–4522 (2017)

    Article  MathSciNet  Google Scholar 

  4. Biggs, D.S., Andrews, M.: Acceleration of iterative image restoration algorithms. Appl. Opt. 36(8), 1766–1775 (1997)

    Article  Google Scholar 

  5. Hong, H., Hua, X., Zhang, X., et al.: Multi-frame real image restoration based on double loops with alternative maximum likelihood estimation. SIViP 10, 1489 (2016). https://doi.org/10.1007/s11760-016-0960-z

    Article  Google Scholar 

  6. Hansen, P.C. et al.: Deblurring Images: Matrices, Spectra, and Filtering. Society of Industrial Appllied Mathematics, Philadelphia, PA 19104-2688 USA (2006)

  7. Bilal, M., et al.: Optimal edge preserving restoration with efficient regularisation. Imaging Sci. J. 63(2), 68–75 (2015)

    Article  Google Scholar 

  8. Kheradmand, A., Milanfar, P.: A general framework for regularized, similarity-based image restoration. IEEE Trans. Image Process. 24, 5136–5151 (2014)

    Article  MathSciNet  Google Scholar 

  9. Bilal, M., et al.: Novel optimization framework to recover true image data. Cognit. Comput. 7(6), 680–692 (2015)

    Article  Google Scholar 

  10. Bilal, M., et al.: Modified particle swarm optimization and fuzzy regularization for pseudo de-convolution of spatially variant blurs. Multimed. Tools Appl. 75, 6533–6548 (2015). https://doi.org/10.1007/s11042-015-2587-4

    Article  Google Scholar 

  11. Bilal, M., Wyne, M.F., Jaffar, M.A.: Image restoration by multivariate-stochastic optimization using improved particle swarm algorithm. In: Proceedings IEEE Congress Evolutionary Computation (CEC), pp. 2596–2603 (2016). https://doi.org/10.1007/s11042-015-2587-4

  12. Perry, S.W.: Adaptive image restoration: perception based neural network models and algorithms, Ph.D. dissertation, School of Electrical and Information Engineering, Univ. Sydney, NSW, Australia (2006)

  13. Xu, L., Ren, J., Liu, C., Jia, J.: Deep convolutional neural network for image deconvolution. In: Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N.D., Weinberger,K.Q. (Eds.) Proceedings of the 27th International Conference on Neural Information Processing Systems, Volume 1 (NIPS’14), Vol. 1., pp. 1790-1798. MIT Press, Cambridge, MA, USA (Dec. 2014)

  14. Pires, R., Santos, D., Souza, G., Levada, A., Papa, J.: A deep boltzmann machine-based approach for robust image denoising. In: 22nd Iberoamerican Congress on Pattern Recognition, At Santiago, Chile (Nov. 2017)

  15. Gonzalez, R.C., Woods, R.: Digital Image Processing, 3rd edn. Prentice Hall, Upper Sadle River (2008)

    Google Scholar 

  16. Sharif, M., Hussain, A., Jaffar, M.A., et al.: Fuzzy-based hybrid filter for Rician noise removal. SIViP 10, 215 (2016). https://doi.org/10.1007/s11760-014-0729-1

    Article  Google Scholar 

  17. Liu, L., Philip Chen, C.L., Zhou, Y., et al.: A new weighted mean filter with a two-phase detector for removing impulse noise. Inf. Sci 315, 1–16 (2015). https://doi.org/10.1016/j.ins.2015.03.067

    Article  MathSciNet  MATH  Google Scholar 

  18. Lucy, L.B.: An iterative technique for the rectification of observed distribution. Astron. J. 79, 745 (1974)

    Article  Google Scholar 

  19. Richardson, W.H.: Bayesian-based iterative method of image restoration. J. Opt. Soc. Am. 62, 55–59 (1972)

    Article  Google Scholar 

  20. Gonzalez, R.C., et al.: Digital Image Processing Using MATLAB, 2nd edn. Gatesmark Publishing, Knoxville (2009)

    Google Scholar 

  21. Mignotte, M.: A segmentation based regularization term for image deconvolution. IEEE Trans. Image Process. 15, 1973–1984 (2006)

    Article  Google Scholar 

  22. Siadat, M., Aghazadeh, N., Öktem, O.: Reordering for improving global Arnoldi–Tikhonov method in image restoration problems. SIViP 12, 497 (2018). https://doi.org/10.1007/s11760-017-1185-5

    Article  Google Scholar 

  23. Adam, T., Paramesran, R.: Hybrid non-convex second-order total variation with applications to non-blind image deblurring. SIViP (2019). https://doi.org/10.1007/s11760-019-01531-3

    Article  MATH  Google Scholar 

  24. Paik, J., Katsaggelos, A.: Image restoration using a modified hopfield network. IEEE Trans Image Process. 1(1), 49–63 (1992)

    Article  Google Scholar 

  25. Bilal, M., et al.: Estimation and optimization based ill-posed inverse restoration using fuzzy logic. Multimed Tools Appl. 69(3), 1067–1087 (2014)

    Article  Google Scholar 

  26. Huang, C., et al.: Robust image restoration via adaptive low-rank approximation and joint kernel regression. IEEE Trans. Image Process. 23, 5284–97 (2014)

    Article  MathSciNet  Google Scholar 

  27. Liu, J., et al.: An efficient variational method for image restoration. Abstr Appl Anal 213536, 1–11 (2013)

    MathSciNet  Google Scholar 

  28. Le, J., et al.: A new efficient alternating method for image restoration and texture extraction. J. Comput. Inf. Syst. 9(7), 2595–2602 (2013)

    Google Scholar 

  29. Zhang, X., et al.: Non-blind deblurring of structured images with geometric deformation. Vis Comput. 3(2), 131–140 (2015)

    Article  Google Scholar 

  30. Huang, H., Wang, K.: Texture-preserving deconvolution via image decomposition. SIViP 11, 1189 (2017). https://doi.org/10.1007/s11760-017-1074-y

    Article  Google Scholar 

  31. Ren, W. et al.: Deep Non-Blind Deconvolution via Generalized Low-Rank Approximation, 32 Neural Information Processing Systems (NIPS 2018), Montreal, Canada, pp. 297–307 (2018)

  32. Bilal, M., Rehman, MSu, Jaffar, M.A.: Evolutionary reconstruction: image restoration for space variant degradation. Smart Comput. Rev 3(4), 220–232 (2013)

    Article  Google Scholar 

  33. Martin, D., Fowlkes, C., Tal, D., Malik, J.: A Database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: Proceedings 8th International Conference Computer Vision, vol. 2, pp. 416–423 (July 2001)

  34. Roth, S., Black, M.J.: Fields of experts. Int. J. Comput. Vis. 82(2), 205–229 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohsin Bilal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bilal, M., Arif, M. A generalized modeling of ill-posed inverse reconstruction of images using a novel data-driven framework. SIViP 14, 333–341 (2020). https://doi.org/10.1007/s11760-019-01559-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-019-01559-5

Keywords

Navigation