Skip to main content
Log in

Deep dictionary learning application in GPR B-scan images

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

This paper introduces GPR B-scan database which contains 180 labelled images to facilitate research in developing presentation algorithm for this challenging scenario. Along with GPR B-scan images, there are several other detections of buried objects that are explored in the literature. The next contribution of this research is a novel multilevel deep dictionary learning-based presentation buried object detection algorithm that can discern different kinds of materials. An efficient layer by layer training approach is formulated to learn the deep dictionaries followed by different classifiers as types of shape for buried objects. By changing the number of layers in proposed algorithm, performances in different classifiers are compared. It is possible to integrate the proposed algorithm with real-time systems because it is supervised and has high classification accuracy with 94.4%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Ghasemi, FShA, Abrishamian, M.S.: A novel method for FDTD numerical GPR imaging of arbitrary shapes based on Fourier transform. NDT E Int. 40(2), 140–146 (2007)

    Article  Google Scholar 

  2. Malhotra, V.M., Carino, N.J., (eds).: Nondestructive testing of concrete. ASTM International, West Conshohocken (2004)

  3. Daniels, D.J., Gunton, D.J., Scott, H.F.: Introduction to subsurface radar. Radar Signal Process. 135(4), 278–320 (1988)

    Google Scholar 

  4. Benedetto, A., Benedetto, F., De Blasiis, M.R., Giunta, G.: Reliability of signal processing technique for pavement damages detection and classification using ground penetrating radar. IEEE Sens. J. 5(3), 471–480 (2005)

    Article  Google Scholar 

  5. Roth, F., van Genderen, P., Verhaegen, M.: Convolutional models for buried target characterization with ground penetrating radar. IEEE Trans. Antennas Propag. 53(11), 3799–3810 (2005)

    Article  Google Scholar 

  6. Persico, R.: On the role of measurement configuration in contactless GPR data processing by means of linear inverse scattering. IEEE Trans. Antennas Propag. 54(7), 2062–2071 (2006)

    Article  Google Scholar 

  7. Varyanitza-Roshchupkina, L.A., Pochanin, G.P.: Strategy of GPR searching for low radar contrast plastic pipes in ground. IEEE Aerosp. Electron. Syst. Magn. 21(12), 23–26 (2006)

    Article  Google Scholar 

  8. Counts, T., Gurbuz, A.C., Scott, W.R., McClellan, J.H., Kim, Kangwook: Multistatic ground-penetrating radar experiments. IEEE Trans. Geosci. Remote Sens. 45(8), 2544–2553 (2007)

    Article  Google Scholar 

  9. Fischer, C., Herschlein, A., Younis, M., Wiesbeck, W.: Detection of antipersonnel mines by using the factorization method on multistatic ground-penetrating radar measurements. IEEE Trans. Geosci. Remote Sens. 45(1), 85–92 (2007)

    Article  Google Scholar 

  10. Kao, C.P., Li, J., Wang, Y., Xing, H., Liu, C.R.: Measurement of layer thickness and permittivity using a new multilayer model from GPR data. IEEE Trans. Geosci. Remote Sens. 45(8), 2463–2470 (2007)

    Article  Google Scholar 

  11. Kovalenko, V., Yarovoy, A.G., Ligthart, L.P.: A novel clutter suppression algorithm for landmine detection with GPR. IEEE Trans. Geosci. Remote Sens. Part 2 45(11), 3740–3751 (2007)

    Article  Google Scholar 

  12. Loizos, A., Plati, C.: Accuracy of ground penetrating radar horn-antenna technique for sensing pavement subsurface. IEEE Sens. J. 7(5), 842–850 (2007)

    Article  Google Scholar 

  13. Lopera, O., Slob, E.C., Milisavljevic, N., Lambot, S.: Filtering soil surface and antenna effects from GPR data to enhance landmine detection. IEEE Trans. Geosci. Remote Sens. 45(3), 707–717 (2007)

    Article  Google Scholar 

  14. Oden, C.P., Powers, M.H., Wright, D.L., Olhoeft, G.R.: Improving GPR image resolution in lossy ground using dispersive migration. IEEE Trans. Geosci. Remote Sens. 45(8), 2492–2500 (2007)

    Article  Google Scholar 

  15. Savelyev, T.G., van Kempen, L., Sahli, H., Sachs, J., Sato, M.: Investigation of time–frequency features for GPR landmine discrimination. IEEE Trans. Geosci. Remote Sens. 45(1), 118–129 (2007)

    Article  Google Scholar 

  16. Torrione, P., Collins, L.M.: Texture features for antitank landmine detection using ground penetrating radar. IEEE Trans. Geosci. Remote Sens. Part 2 45(7), 2374–2382 (2007)

    Article  Google Scholar 

  17. Ho, K.C., Carin, L., Gader, P.D., Wilson, J.N.: An investigation of using the spectral characteristics from ground penetrating radar for landmine/clutter discrimination. IEEE Trans. Geosci. Remote Sens. Part 2 46(4), 1177–1191 (2008)

    Article  Google Scholar 

  18. Travassos, X.L., Vieira, D.A.G., Ida, N., Vollaire, C., Nicolas, A.: Inverse algorithms for the GPR assessment of concrete structures. IEEE Trans. Magn. 44(6), 994–997 (2008)

    Article  Google Scholar 

  19. Singhal, V., Khurana, P., Majumdar, A.: Class-wise deep dictionary learning. In: 2017 International Joint Conference on Neural Networks (IJCNN). https://doi.org/10.1109/ijcnn.2017.7965978 (2017)

  20. Manjani, I., Tariyal, S., Vatsa, M., Singh, R., Majumdar, A.: Detecting silicone mask-based presentation attack via deep dictionary learning. IEEE Trans. Inf. Forensics Secur. 12(7), 1713–1723 (2017). https://doi.org/10.1109/tifs.2017.2676720

    Article  Google Scholar 

  21. Ramirez, I., Sprechmann, P., Sapiro, G.: Classification and clustering via dictionary learning with structured incoherence and shared features. In: Proceedings IEEE Conference Computer Vision and Pattern Recognition, pp. 3501–3508, June (2010)

  22. Jiang, Z., Lin, Z., Davis, L.S.: Label consistent K-SVD: learning a discriminative dictionary for recognition. IEEE Trans. Pattern Anal. Mach. Intell. 35(11), 2651–2664 (2013)

    Article  Google Scholar 

  23. Salakhutdinov, R., Hinton, G.: Deep Boltzmann machines, In: Proceedings of International Conference on Artificial Intelligence and Statistics, pp. 448–455 (2009)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Umut Ozkaya.

Ethics declarations

Conflict of interest

There is no conflict of interest between the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ozkaya, U., Seyfi, L. Deep dictionary learning application in GPR B-scan images. SIViP 12, 1567–1575 (2018). https://doi.org/10.1007/s11760-018-1313-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-018-1313-x

Keywords

Navigation