Skip to main content
Log in

A usability-based subjective remote sensing image quality assessment database

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

The current rate of success in launching satellites and advances in onboard and ground image processing have led to a dramatic increase in the scale of remote sensing image data. This has resulted in considerable research on how to provide the best quality of experience to end users. However, subjective image quality assessment (IQA) is time-consuming, cumbersome, expensive and cannot be implemented automatically using computers. Thus, subjective IQA may not be suitable for application requirements. In this paper, we design and construct a usability-based subjective remote sensing IQA database. A corresponding no-reference IQA method is also proposed. The new IQA method uses scale-invariant feature transforms to form a dictionary and then a support vector machine to obtain an IQA model. The experimental results show that the new subjective IQA database is highly suited to the task, and the quality predictions of the new IQA method correlate well with human subjective scores in the new database.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ni, W., Sun, G., Ranson, K.J., et al.: Extraction of ground surface elevation from ZY-3 winter stereo imagery over deciduous forested areas. Remote Sens. Environ. 159, 194–202 (2015)

    Article  Google Scholar 

  2. Wang, J., Zhang, J., Yi, M.A.: Position precision evaluation of secondary product of resource-1 02C satellite remote sensing image. Hydrogr. Surv. Charting 33(5), 67–70 (2013)

    Google Scholar 

  3. Yang, B., Wang, M.: On-orbit geometric calibration method of ZY1C02C panchromatic camera. Remote Sens. 17, 1175–1190 (2013)

    Google Scholar 

  4. Zhang, Y., Zheng, M., Xiong, X., et al.: Multistrip bundle block adjustment of ZY-3 satellite imagery by rigorous sensor model without ground control point. IEEE Geosci. Remote Sens. Lett. 12(4), 865–869 (2015)

    Article  Google Scholar 

  5. Wan, W., Xiao, P., Feng, X., et al.: Monitoring lake changes of Qinghai-Tibetan Plateau over the past 30 years using satellite remote sensing data. Chin. Sci. Bull. 59(10), 1021–1035 (2014)

    Article  Google Scholar 

  6. Wang, L., Yang, R., Tian, Q., et al.: Comparative analysis of GF-1 WFV, ZY-3 MUX, and HJ-1 CCD sensor data for grassland monitoring applications. Remote Sens. 7(2), 2089–2108 (2015)

    Article  Google Scholar 

  7. Li, X., Guo, H.: Remote sensing of the China Seas. Int. J. Remote Sens. 35(11), 3919–3925 (2014)

    Article  Google Scholar 

  8. Gao, M.L., Zhao, W.J., Gong, Z.N., et al.: Topographic correction of ZY-3 satellite images and its effects on estimation of shrub leaf biomass in mountainous areas. Remote Sens. 6(4), 2745–2764 (2014)

    Article  Google Scholar 

  9. Lin, C., Li, Y., Yuan, Z., et al.: Using satellite remote sensing data to estimate the high-resolution distribution of ground-level PM2.5. Remote Sens. Environ. 156, 117–128 (2015)

    Article  Google Scholar 

  10. Marr, D.: Vision: A computational investigation into the human representation and processing of visual information. W.H. Freeman, San Francisco, New York (1982)

  11. Legge, G.E., Foley, Jm: Contrast masking in human vision. J. Opt. Soc. Am. 70(12), 1458–1471 (1980)

    Article  Google Scholar 

  12. Karunasekera, S.A., Kingsbury, N.G.: A distortion measure for blocking artifacts in images based on human visual sensitivity. IEEE Trans. Image Process. 4(6), 713–724 (1995)

    Article  Google Scholar 

  13. Dumic, E., Grgic, S., Grgic, M.: IQM2: new image quality measure based on steerable pyramid wavelet transform and structural similarity index. SIViP 8(6), 1159–1168 (2014)

    Article  Google Scholar 

  14. Lin, Z., Zhang, D., Mou, X., et al.: FSIM: a feature similarity index for image quality assessment. IEEE Trans. Image Process. 20(8), 2378–2386 (2011)

    Article  MathSciNet  Google Scholar 

  15. Abdelouahad, A.A., El Hassouni, M., Cherifi, H., et al.: Reduced reference image quality assessment based on statistics in empirical mode decomposition domain. SIViP 8(8), 1663–1680 (2014)

    Article  Google Scholar 

  16. Soundararajan, R., Bovik, A.C.: RRED indices: reduced reference entropic differencing for image quality assessment. IEEE Trans. Image Process. 21(2), 517–526 (2012)

    Article  MathSciNet  Google Scholar 

  17. Moorthy, K., Bovik, A.C.: A two-step framework for constructing blind image quality indices. IEEE Signal Process. Lett. 17(5), 513–516 (2010)

    Article  Google Scholar 

  18. Saad, M.A., Bovik, A.C., Charrier, C.: Blind image quality assessment: a natural scene statistics approach in the DCT domain. IEEE Trans. Image Process. 21(8), 3339–3352 (2012)

    Article  MathSciNet  Google Scholar 

  19. Mittal, A., Moorthy, A.K., Bovik, A.C.: No-reference image quality assessment in the spatial domain. IEEE Trans. Image Process. 21(12), 4695–4708 (2012)

  20. Zhang, Y., Chandler, D.M.: No-reference image quality assessment based on log-derivative statistics of natural scenes. J. Electron. Imaging 22(4), 043025–043025 (2013)

    Article  Google Scholar 

  21. Moorthy, K., Bovik, A.C.: Blind image quality assessment: from scene statistics to perceptual quality. IEEE Trans. Image Process. 20(12), 3350–3364 (2011)

    Article  MathSciNet  Google Scholar 

  22. Mittal, A., Soundararajan, R., Bovik, A.C.: Making a “completely blind” image quality analyzer. IEEE Signal Process. Lett. 20(3), 209–212 (2013)

    Article  Google Scholar 

  23. Liu, L., Liu, B., Huang, H., et al.: No-reference image quality assessment based on spatial and spectral entropies. Signal Process. Image Commun. 29(8), 856–863 (2014)

    Article  Google Scholar 

  24. Lowe, D.G.: Object recognition from local scale-invariant features. In: Proceedings of the International Conference on Computer Vision, Corfu, p. 1150 (1999)

  25. Burges, C.J.C.: A tutorial on support vector machines for pattern recognition. Data Min. Knowl. Discov. 2(2), 121–167 (1998)

    Article  Google Scholar 

  26. Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines. ACM Trans. Intell. Syst. Technol. 2(3), 389–396 (2001)

    Google Scholar 

  27. ITU: Methodology for the subjective assessment of the quality of television picture. In: Recommendation ITU-R BT.500-13, International Telecommunication Union, Geneva, Switzerland (2012)

  28. Mackay, D.: An example inference task: clustering, in information theory, inference, and learning algorithms. PLoS ONE 6(8), 284–292 (2003)

    Google Scholar 

  29. Hartigan, J.A., Wong, M.A.: Algorithm AS 136: a \(k\)-means clustering algorithm. Appl. Stat. 28(1), 100–108 (1979)

    Article  MATH  Google Scholar 

  30. VQEG: Final report from the video quality experts group on the validation of objective models of video quality assessment. http://www.vqeg.org/ (2000)

  31. Wang, Z., Li, Q.: Information content weighting for perceptual image quality assessment. IEEE Trans. Image Process. 20(5), 1185–1198 (2011)

    Article  MathSciNet  Google Scholar 

  32. Ponomarenko, N., Battisti, F., Egiazarian, K., et al.: Metrics performance comparison for color image database. In: Fourth International Workshop on Video Processing and Quality Metrics for Consumer Electronics, vol. 27 (2009)

Download references

Acknowledgements

This paper is supported by Project of civil space technology pre-research of the 12th five-year plan (D040201).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xichen Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, X., Sun, Q. & Wang, T. A usability-based subjective remote sensing image quality assessment database. SIViP 11, 697–704 (2017). https://doi.org/10.1007/s11760-016-1012-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-016-1012-4

Keywords

Navigation