Skip to main content
Log in

Sparse representation-based algorithm for joint SAR image formation and autofocus

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

Inaccuracies in the observation model of the synthetic aperture radar (SAR) due to inaccuracies of the velocity and position of the platform or atmospheric turbulence cause degradations in reconstructed images which necessitate the use of autofocus algorithms. In this paper we propose a novel signal processing algorithm for joint SAR image formation and autofocus in a synthesis dictionary based sparse representation framework. Proposed algorithm can be applied broadly to scenes that exhibit sparsity with respect to any dictionary. This is done by extending our previously developed sparse representation-based SAR imaging framework to joint SAR image formation and autofocus. To this end, the phase error vector is separated from the unknown phase of the complex-valued back-scattered field. Phase error vector is estimated using a MAP estimator and compensated through an iterative algorithm to produce focused images. We demonstrate the effectiveness of the proposed approach on synthetic and real imagery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Wiley, C.A.: Pulsed Doppler radar methods and apparatus. Google Patents (1965)

  2. Jakowatz, C.V., Wahl, D.E., Eichel, P.H., Ghiglia, D.C., Thompson, P.A.: Spotlight-Mode Synthetic Aperture Radar: A Signal Processing Approach, vol. 101. Kluwer, Norwell (1996)

    Book  Google Scholar 

  3. Carrara, W.G., Goodman, R.S., Majewski, R.M.: Spotlight Synthetic Aperture Radar: Signal Processing Algorithms. Artech House, Boston (1995)

    MATH  Google Scholar 

  4. Wahl, D., Eichel, P., Ghiglia, D., Jakowatz Jr., C.: Phase gradient autofocus—a robust tool for high resolution SAR phase correction. IEEE Trans. Aerosp. Electron. Syst. 30, 827–835 (1994)

    Article  Google Scholar 

  5. Morrison, R.L., Do, M.N., Munson, D.C.: MCA: a multichannel approach to SAR autofocus. IEEE Trans. Image Process. 18, 840–853 (2009)

    Article  MathSciNet  Google Scholar 

  6. Önhon, N.Ö., Çetin, M.: A sparsity-driven approach for joint SAR imaging and phase error correction. IEEE Trans. Image Process. 21, 2075–2088 (2012)

    Article  MathSciNet  Google Scholar 

  7. Çetin, M., Karl, W.C.: Feature-enhanced synthetic aperture radar image formation based on nonquadratic regularization. IEEE Trans. Image Process. 10, 623–631 (2001)

    Article  MATH  Google Scholar 

  8. Kelly, S., Yaghoobi, M., Davies, M.: Sparsity-based autofocus for undersampled synthetic aperture radar. IEEE Trans. Aerosp. Electron. Syst. 50, 972–986 (2014)

    Article  Google Scholar 

  9. Ügur, S., Arkan, O.: SAR image reconstruction and autofocus by compressed sensing. Digit. Signal Process. 22(6), 923–932 (2012)

    Article  MathSciNet  Google Scholar 

  10. Samadi, S., Çetin, M., Masnadi-Shirazi, M.A.: Sparse representation-based synthetic aperture radar imaging. IET Radar Sonar Navig. 5, 182–193 (2011)

  11. Starck, J.L., Elad, M., Donoho, D.L.: Image decomposition via the combination of sparse representations and a variational approach. IEEE Trans. Image Process. 14(10), 1570–1582 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  12. Donoho, D.L., Johnstone, I.: Ideal spatial adaptation via wavelet shrinkage. Biometrika 81, 425–455 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  13. Chen, S.S., Donoho, D.L., Saunders, M.A.: Atomic decomposition by basis pursuit. SIAM J. Sci. Comput. 20, 33–61 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  14. Samadi, S., Çetin, M., Masnadi-Shirazi, M.A. :Sparse signal representation for complex-valued imaging. In: 13th IEEE Digital Signal Processing Workshop, pp. 365–370 (2009)

  15. Elad, M., Bruckstein, A.M.: A generalized uncertainty principle and sparse representation in pairs of bases. IEEE Trans. Inf. Theory 48, 2558–2567 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  16. Malioutov, D.M., Çetin, M., Willsky, A.S.: Optimal sparse representations in general overcomplete bases. In: IEEE International Conference on Acoustics, Speech, and Signal Processing, (ICASSP’04), pp. ii-793-6 (2004)

  17. Bonnans, J.F., Gilbert, J.C., Lemarechal, C., Sagastizabal, C.A.: Numerical Optimization: Theoretical and Practical Aspects. Springer, Berlin (2006)

    MATH  Google Scholar 

  18. Golub, G.H., Van Loan, C.F.: Matrix Computations. JHU Press, Baltimore (2012)

    MATH  Google Scholar 

  19. Çetin, M., Karl, W.C., Willsky, A.S.: Feature-preserving regularization method for complex-valued inverse problems with application to coherent imaging. Opt. Eng. 45, 017003-11 (2006)

    Google Scholar 

  20. Batu, O., Çetin, M.: Parameter selection in sparsity-driven SAR imaging. IEEE Trans. Aerosp. Electron. Syst. 47(4), 3040–3050 (2011)

    Article  Google Scholar 

  21. http://photojournal.jpl.nasa.gov/catalog/pia01843

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sadegh Samadi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 217 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hasankhan, M.J., Samadi, S. & Çetin, M. Sparse representation-based algorithm for joint SAR image formation and autofocus. SIViP 11, 589–596 (2017). https://doi.org/10.1007/s11760-016-0998-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-016-0998-y

Keywords

Navigation