Skip to main content
Log in

Hierarchical multi-resolution decomposition of statistical shape models

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

Active shape models (ASMs) are some of the most actively used model-based segmentation approaches, whose usefulness has been successfully demonstrated in a wide variety of applications. However, they suffer from two important drawbacks: (1) the large number of training samples required to adequately model the object of interest and (2) their dependence on the initialization. Partial solutions for both of these problems have been proposed but come at the expense of a significant increase in computation time, which is of great importance in current applications. Based on the wavelet transform, the present paper proposes a new full multi-resolution framework that allows not only to hierarchically decompose any type of shape into a set of bands of information, but also to create instances of the shape with different degrees of detail. This is a multi-resolution decomposition of the shape space. Combining this new approach with a multi-resolution Gaussian pyramid of the image, the result is a new full multi-resolution hierarchical ASM that reduces both the size of the training set required and the initialization dependence while improving the classical segmentation algorithms accuracy and computational complexity. The advantages of this new algorithm have been successfully verified over two different databases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Notes

  1. The absolute running times correspond to implementations performed on a 3.3 GHz Intel\(^{\textregistered }\) Xeon\(^{\textregistered }\) W5590 with 12 GB of RAM. All implementations were in Matlab\(^{\textregistered }\) R2010a 64-bits prioritizing the clarity of the code over the execution speed. Thus, they must be interpreted with caution and not as an absolute reference.

References

  1. Pal, N.R., Pal, S.K.: A review on image segmentation techniques. Pattern Recognit. 26(9), 1277–1294 (1993)

    Article  Google Scholar 

  2. Xu, C., Pham, D.L., Prince, J.L.: Image Segmentation Using Deformable Models, vol. 2, chap. 3, pp. 129–174. SPIE Press (2000)

  3. Toennies, K.: Segmentation Principles and Basic Techniques, Advances in Computer Vision and Pattern Recognition, chap. 6, pp. 171–208. Springer, Berlin (2012)

  4. Widrow, B.: the ”Rubber-Mask” technique: I. Pattern measurement and analysis. Pattern Recognit. 5(3), 175–176 (1973)

    Article  Google Scholar 

  5. Kass, M., Witkin, A., Terzopoulos, D.: Snakes: active contour models. Int. J. Comput. Vis. 1(4), 321–331 (1988)

    Article  Google Scholar 

  6. Terzopoulos, D., Fleischer, K.W.: Deformable models. Vis. Comput. 4(6), 306–331 (1988)

    Article  Google Scholar 

  7. Taylor, C.J., Cooper, D.H., Graham, J.: Training models of shape from sets of examples. In: Proceedings of British Machine Vision Conference, pp. 9–18 (1992)

  8. Cootes, T.F., Taylor, C.J., Cooper, D.H., Graham, J.: Active shape models-their training and application. Comput. Vis. Image Underst. 61(1), 38–59 (1995)

    Article  Google Scholar 

  9. van Ginneken, B., Stegmann, M.B., Loog, M.: Segmentation of anatomical structures in chest radiographs using supervised methods: a comparative study on a public database. Med. Image Anal. 10(1), 19–40 (2006)

    Article  Google Scholar 

  10. Allen, P.D., Graham, J., Farnell, D.J.J., Harrison, E.J., Jacobs, R., Nicopolou-Karayianni, K., Lindh, C., van der Stelt, P.F., Horner, K., Devlin, H.: Detecting reduced bone mineral density from dental radiographs using statistical shape models. IEEE Trans. Inf. Tech. Biomed. 11(6), 601–610 (2007)

    Article  Google Scholar 

  11. Frangi, A.F., Rueckert, D., Schnabel, J.A., Niessen, W.J.: Automatic construction of multiple-object three-dimensional statistical shape models: application to cardiac modeling. IEEE Trans. Med. Imaging 21(9), 1151–1166 (2002)

    Article  Google Scholar 

  12. Lanitis, A., Taylor, C.J., Cootes, T.F.: Automatic interpretation and coding of face images using flexible models. IEEE Trans. Pattern Anal. Mach. Intell. 19(7), 743–756 (1997)

    Article  Google Scholar 

  13. Sukno, F.M., Ordas, S., Butakoff, C., Cruz, S., Frangi, A.F.: Active shape models with invariant optimal features: application to facial analysis. IEEE Trans. Pattrn. Anal. Mach. Intell. 29(7), 1105–1117 (2007)

    Article  Google Scholar 

  14. Lee, S.W., Kang, J., Shin, J., Paik, J.: Hierarchical active shape model with motion prediction for real-time tracking of non-rigid objects. I. E. T. Comput. Vis. 1(1), 17–24 (2007)

    MathSciNet  Google Scholar 

  15. van Ginneken, B., Frangi, A.F., Staal, J.J., ter Haar Romeny, B.M., Viergever, M.A.: Active shape model segmentation with optimal features. IEEE Trans. Med. Imaging 21(8), 924–933 (2002)

    Article  Google Scholar 

  16. Duta, N., Sonka, M.: Segmentation and interpretation of mr brain images: an improved active shape model. IEEE Trans. Med. Imaging 17(6), 1049–1062 (1998)

    Article  Google Scholar 

  17. Davies, R.H., Twining, C.J., Cootes, T.F., Taylor, C.J.: Building 3-D statistical shape models by direct optimization. IEEE Trans. Med. Imaging 29(4), 961–981 (2010)

    Article  Google Scholar 

  18. Hamarneh, G., Gustavsson, T.: Deformable spatio-temporal shape models: extending active shape models to 2D+time. Image Vis. Comput. 22(6), 461–470 (2004)

    Article  Google Scholar 

  19. Cootes, T.F., Taylor J.C., Lanitis, A.: Active shape models: evaluation of a multi-resolution method for improving image search. In: Proceedings of British Machine Vision Conference, vol. 5, pp. 327–336 (1994)

  20. Cerrolaza, J.J., Villanueva, A., Sukno, F.M., Butakoff, C., Frangi, A.F., Cabeza, R.: Full multiresolution active shape models. J. Math. Imaging Vis. 44(3), 463–479 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  21. Davatzikos, C., Tao, X., Shen, D.: Hierarchical active shape models, using the wavelet transform. IEEE Trans. Med. Imaging 22(3), 414–423 (2003)

    Article  Google Scholar 

  22. Cerrolaza, J., Villanueva, A., Cabeza, R.: Hierarchical statistical shape models of multiobject anatomical structures: application to brain MRI. IEEE Trans. Med. Imaging 31(3), 713–724 (2012). doi:10.1109/TMI.2011.2175940

    Article  MathSciNet  Google Scholar 

  23. Cootes, T.F., Taylor, C.J.: Active shape models: a review of recent work. In: Current Issues in Statistical Shape Analysis, pp. 108–114. Leeds University Press (1995)

  24. Cootes, T.F., Taylor, C.J.: Statistical models of appearance for computer vision. Tech. rep., Department of Imaging Science and Biomedical Engineering, University of Manchester (2004)

  25. Goodall, C.: Procrustes methods in the statistical analysis of shape. J. R. Stat. Soc. Ser. B (Methodological) 53(2), 285–339 (1991)

    MathSciNet  MATH  Google Scholar 

  26. Cerrolaza, J.J., Villanueva, A., Cabeza, R.: Shape constraint strategies: novel approaches and comparative robustness. In: Proceedings of British Machine Vision Conference (2011)

  27. Cootes, T.F., Hill, A., Taylor, C.J., Haslam, J.: Use of active shape models for locating structures in medical images. Image Vis. Comput. 12(6), 355–365 (1994)

    Article  Google Scholar 

  28. Sukno, F.M., Frangi, A.F.: Reliability estimation for statistical shape models. IEEE Trans. Image Proc. 17(12), 2442–2455 (2008)

    Article  MathSciNet  Google Scholar 

  29. Hill, A., Taylor, C., Brett, A.: A framework for automatic landmark identification using a new method of nonrigid correspondence. IEEE Trans Pattern Anal. Mach. Intell. 22(3), 241–251 (2000)

    Article  Google Scholar 

  30. Morlet, J., Arens, G., Fourgeau, E., Giard, D.: Wave propagation and sampling theory. Geophysics 47, 203 (1982)

    Article  Google Scholar 

  31. Grossmann, A., Morlet, J.: Decomposition of hardy functions into square integrable wavelets of constant shape. J. Math. Anal. 15(4), 723–736 (1984)

    MathSciNet  MATH  Google Scholar 

  32. Bijaoui, A., Fresnel, A.: Wavelets and the analysis of astronomical objects. In: Fournier, J.D., Sulem, P.L. (eds.) Large Scale Structures in Nonlinear Physics, Lecture Notes in Physics, vol. 392, pp. 340–347. springer, Berlin (1991)

    Chapter  Google Scholar 

  33. Mallat, S.G.: A theory for multiresolution signal decomposition: the wavelet representation. IEEE Trans. Pattern Anal. Mach. Intell. 11(7), 674–693 (1989). doi:10.1109/34.192463

    Article  MATH  Google Scholar 

  34. Akay, M.: Wavelet applications in medicine. IEEE Spectr. 34(5), 50–56 (1997)

    Article  Google Scholar 

  35. Shui, P.L., Zhou, Z.F., Li, J.X.: Image denoising algorithm via best wavelet packet base using wiener cost function. I.E.T. Image Process. 1(3), 311–318 (2007)

    Article  Google Scholar 

  36. Lee, T.S.: Image representation using 2D Gabor wavelets. IEEE Trans. Pattern Anal. Mach. Intell. 18(10), 959–971 (1996)

    Article  Google Scholar 

  37. Wu, H.H., Liu, J.C., Chui, C.: A wavelet-frame based image force model for active contouring algorithms. IEEE Trans. Image Proc. 9(11), 1983–1988 (2000)

    Article  Google Scholar 

  38. Strickland, R., Hahn, H.I.: Wavelet transform methods for object detection and recovery. IEEE Trans. Image Process. 6(5), 724–735 (1997)

    Article  Google Scholar 

  39. Daubechies, I.: Ten Lectures on Wavelets. Society for Industrial and Applied Mathematics (1992)

  40. Burrus, C.S., Gopinath, R.A., Guo, H.: Introduction to Wavelets and Wavelet Transform: A Primer. Prentice Hall, Englewood Cliffs, NJ (1998)

  41. Lounsbery, M., DeRose, T., Warren, J.: Multiresolution surfaces of arbitrary topological type. Technical report. Department of Computer Science and Engineering, University of Washington (1994)

  42. Finkelstein, A., Salesin, D.H.: Multiresolution Curves. In: SIGGRAPH, pp. 261–268 (1994)

  43. Nain, D., Haker, S., Bobick, A., Tannenbaum, A.: Multiscale 3-D shape representation and segmentation using spherical wavelets. Trans. Med. Imag. 26, 598–618 (2006)

    Article  Google Scholar 

  44. Stollnitz, E.J., Derose, T.D., Salesin, D.H.: Wavelets for Computer Graphics: Theory and Applications. Morgan Kaufmann Publishers Inc., Los Altos, CA (1996)

    Google Scholar 

  45. Cerrolaza, J., Villanueva, A., Cabeza, R.: Multi-shape: hierarchical active shape models. In: Proceedings of International Conference on Image Processing, Computer Vision, and Pattern Recognition (IPCV’11), vol. 1, pp. 137–143 (2011)

  46. Shiraishi, J., Katsuragawa, S., Ikezoe, J., Matsumoto, T., Kobayashi, T., Komatsu, K., Matsui, M., Fujita, H., Kodera, Y., Doi, K.: Development of a digital image database for chest radiographs with and without a lung nodule: receiver operating characteristic analysis of radiologists’ detection of pulmonary nodules. Am. J. Roentgenol. 174, 71–74 (2000)

    Article  Google Scholar 

  47. Ledoit, O., Wolf, M.: A well-conditioned estimator for large-dimensional covariance matrices. J. Multivar. Anal. 88, 365–411 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  48. Schäfer, J., Strimmer, K.: A shrinkage approach to large-scale covariance matrix estimation and implications for functional genomics. Stat. Appl. Genet. Mole. Biol. 4, Art. 32 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan J. Cerrolaza.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cerrolaza, J.J., Villanueva, A. & Cabeza, R. Hierarchical multi-resolution decomposition of statistical shape models. SIViP 9, 1473–1490 (2015). https://doi.org/10.1007/s11760-014-0616-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-014-0616-9

Keywords

Navigation